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ON THE ASYMPTOTICALLY PERIODIC SOLUTIONS OF A

FIFTH ORDER DIFFERENCE EQUATION

ERKAN TAŞDEMIR

Abstract. In this paper we investigate the stability of solutions of difference
equation xn+1 = xn−1xn−4 − 1. We also study periodic solutions of related
difference equation especially asymptotic periodicity.

1. Introduction

The existence of periodic solutions of difference equations of higher order has a
significant place in the applied sciences. Moreover, the stability analysis of differ-
ence equations has been studied with great interest by many researchers, over the
last years. One of the most important reasons for this interest is that difference
equations have important applications for real life situations. Many mathematical
models created with difference equations apply to various field of science such as
population, genetic and economy. In addition, many authors have worked on the
relevant articles on this topic. Though difference equations seem to simple appear-
ance form, but it is quite difficult to understand thoroughly the behaviors of their
solutions, see [1]-[34] and the references cited therein. Periodic solutions of nonlin-
ear difference equations of higher order are studied their asymptotic properties, by
many authors such as Berg in [21], Karakostas in [13], Stevic in [30], Grove and
Ladas in [11].

In this study we deal with the stability of solutions of the equilibrium point of
the following difference equation

xn+1 = xn−1xn−4 − 1, n = 0, 1, · · · , (1.1)

with arbitrary positive initial conditions x−4, x−3, x−2, x−1, x0. Moreover, we
investigate the periodic and asymptotically periodic solutions of related difference
equation. Eq.(1.1) be a member of the class of equations of the form

xn+1 = xn−kxn−l − 1, n = 0, 1, · · · , (1.2)

with special choices of k and l, where k, l ∈ N0. Additionally, solutions of various
forms of Eq.(1.2) had been studied by many authors in [2] - [5], [8] - [10], [20], [34].
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Now, we present some important definitions and theorems for difference equa-
tions.

Definition 1.1 (Difference Equation, [6]). A difference equation of order (k+1)
is an equation of the form

xn+1 = F (xn, xn−1, ..., xn−k), n = 0, 1, . . . (1.3)

where F is a function that maps some set Ik+1 into I. The set I is usually an
interval of real numbers, or a union of intervals, or a discrete set such as the set
of integers Z = {. . . ,−1, 0, 1, . . .}.
A solution of Eq.(1.3) is a sequence {xn}∞n=−k that satisfies Eq.(1.3) for all n ≥ 0.

Definition 1.2 (Equilibrium, [6]). A solution of Eq.(1.3) that is constant for all
n ≥ −k is called an equilibrium solution of Eq.(1.3). If

xn = x, for all n ≥ −k
is an equilibrium solution of Eq.(1.3), then x is called an equilibrium point, or
simply an equilibrium of Eq.(1.3).

Definition 1.3 (Stability, [6]). (i) An equilibrium point x of Eq.(1.3) is called
locally stable if, every ε > 0, there exists δ > 0 such that if {xn}∞n=−k is a
solution of Eq.(1.3) with

|x−k − x̄|+ |x1−k − x̄|+ · · ·+ |x0 − x̄| < δ

then
|xn − x̄| < ε, for all n ≥ 0.

(ii) An equilibrium point x of Eq.(1.3) is called locally asymptotically stable if,
x̄ is locally stable, and if addition there exists γ > 0 such that if {xn}∞n=−k is a
solution of Eq.(1.3) with

|x−k − x̄|+ |x1−k − x̄|+ · · ·+ |x0 − x̄| < γ,

then
lim
n→∞

xn = x̄.

(iii) An equilibrium point x of Eq.(1.3) is called a global attractor if, for every
solution {xn}∞n=−k of Eq.(1.3), we have

lim
n→∞

xn = x̄.

(iv) An equilibrium point x of Eq.(1.3) is called globally asymptotically stable

if x̄ is locally stable, and x̄ is also a global attractor of Eq.(1.3).
(v) An equilibrium point x of Eq.(1.3) is called unstable if x̄ is not locally stable.

Definition 1.4 (Linearized Equation, [6]). Suppose that the function F is contin-
uously differentiable in some open neighborhood of an equilibrium point x̄. Let

qi =
∂F

∂ui
(x̄, x̄, · · · , x̄) , for i = 0, 1, 2, · · · , k

denote the partial deriative of F (u0, u1, · · · , uk) with respect to ui evaluated at the
equilibrium point x̄ of Eq.(1.3). The equation

zn+1 = q0zn + q1zn−1 + · · ·+ qkzn−k, n = 0, 1, · · · , (1.4)

is called the linearized equation of Eq.(1.3) about the equilibrium point x̄.
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Definition 1.5 (Characteristic Equation, [6]). The equation

λk+1 − q0λ
k − q1λ

k−1 − · · · − qk−1λ− qk = 0 (1.5)

is called the characteristic equation of Eq.(1.4) about the equilibrium point x̄.

Theorem 1.6 (The Linearized Stability Theorem, [6]). Assume that the function
F is a continuously differentiable function defined on some open neighborhood of
an equilibrium point x̄. Then the following statements are true:

(a) When all the roots of Eq.(1.5) have absolute value less than one, then the
equilibrium point x̄ of Eq.(1.3) is locally asymptotically stable. Moreover, in
this here the equilibrium point x̄ of Eq.(1.3) is called sink.

(b) If at least one root of Eq.(1.5) has absolute value greater than one, then the
equilibrium point x̄ of Eq.(1.3) is unstable.

(i) The equilibrium point x̄ of Eq.(1.3) is called hyperbolic if no root of
Eq.(1.5) has absolute value equal to one.

(ii) If there exists a root of Eq.(1.5) with absolute value equal to one, then
the equilibrium x̄ is called nonhyperbolic.

(iii) An equilibrium point x̄ of Eq.(1.3) is called a saddle point if it is
hyperbolic and if there exists a root of Eq.(1.5) with absolute value less than one
and another root of Eq.(1.5) with absolute value greater than one.

(iv) An equilibrium point x̄ of Eq.(1.3) is called a repeller if all roots of
Eq.(1.5) have absolute value greater than one.

Definition 1.7 (Periodicity, [6]). A solution {xn}∞n=−k of Eq.(1.3) is called peri-

odic with period p if there exists an integer p ≥ 1 such that

xn+p = xn, for all n ≥ −k. (1.6)

A solution is called periodic with prime period p if p is the smallest positive inte-
ger for which Eq.(1.6) holds.

Definition 1.8 (Asymptotically Periodic, [19]). A solution of {xn}∞n=−k of Eq.(1.3)
is called asymptotically periodic (asymptotically p-periodic) if there exist two se-
quences u,w : N → R such that u is periodic (p-periodic), lim

n→∞
wn = 0 and

xn = un + wn for all n ∈ N.

2. Stability Analysis of Eq.(1.1)

In this section, firstly we investigate the equilibrium points of Eq.(1.1). Then,
we study the stability analysis of Eq.(1.1).

Lemma 2.1. The equilibrium points of Eq.(1.1) are

x̄1,2 =
1±

√
5

2
. (2.1)

Note that the equilibrium points are golden number ( 1+
√
5

2
= 1.618) and its conju-

gate.

Proof. Let xn = x for all n ≥ −4. Therefore, we get from Eq.(1.1)

x̄ = x̄ · x̄− 1 (2.2)

x̄2 − x̄− 1 = 0. (2.3)
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Thus, from (2.3),

x̄1,2 =
1±

√
5

2
.

So, we obtain the negative and positive equilibrium points of Eq.(1.1) together. �

Lemma 2.2. The linearized equation of Eq.(1.1) about its equilibrium point x is

zn+1 − x · zn−1 − x · zn−4 = 0. (2.4)

Proof. Let I be some interval of real numbers and let

f : I5 → I

be a continuously differentiable function such that f is defined by

f (xn, xn−1, xn−2, xn−3, xn−4) = xn−1xn−4 − 1.

Thus we obtain,

q0 =
∂f

∂xn
(x, x, x, x, x) = [0] (x, x, x, x, x) = 0,

q1 =
∂f

∂xn−1

(x, x, x, x, x) = [xn−4] (x, x, x, x, x) = x,

q2 =
∂f

∂xn−2

(x, x, x, x, x) = [0] (x, x, x, x, x) = 0,

q3 =
∂f

∂xn−3

(x, x, x, x, x) = [0] (x, x, x, x, x) = 0,

q4 =
∂f

∂xn−4

(x, x, x, x, x) = [xn−1] (x, x, x, x, x) = x̄.

If x denotes an equilibrium point of Eq.(1.1), then the linearized equation associated
with Eq.(1.1) about the equilibrium point x is

zn+1 = q0 · zn + q1 · zn−1 + q2 · zn−2 + q3 · zn−3 + q4 · zn−4

then

zn+1 − x · zn−1 − x · zn−4 = 0.

So, the proof is completed. �

Lemma 2.3. The characteristic equation of Eq.(1.1) about its equilibrium point x
is

λ5 − x · λ3 − x = 0. (2.5)

Proof. We have from linearized equation of Eq.(1.1) that

λ5 − x · λ3 − x = 0.

�

Now, we investigate the stability of negative and positive equilibrium points of
Eq.(1.1).

Theorem 2.4. The negative equilibrium x̄1 = 1−
√
5

2
of Eq.(1.1) is unstable. Its a

saddle point.
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Proof. We consider (2.5) for x̄1 = 1−
√
5

2
. Therefore, we get following five roots of

(2.5):

λ1 ≈ −0.791

λ2,3 ≈ −0.223± 1.006i

λ4,5 ≈ 0.619± 0.594i.

Hence,

|λ1| ≈ 0.79 < 1

|λ2,3| ≈ 1. 03 > 1

|λ4,5| ≈ 0.86 < 1.

Thus, we obtain that

|λ1| < |λ4,5| < 1 < |λ2,3| .
So, the negative equilibrium x̄1 = 1−

√
5

2
of Eq.(1.1) is unstable. Because it is a

saddle point. �

Theorem 2.5. The positive equilibrium x̄2 = 1+
√
5

2
of Eq.(1.1) is unstable. Its a

saddle point.

Proof. We consider (2.5) for x̄2 = 1+
√
5

2
. Thus, we obtain following five roots of

(2.5):

λ1 ≈ 1.462

λ2,3 ≈ −1.106± 0.384i

λ4,5 ≈ 0.375± 0.817i.

Therefore,

|λ1| ≈ 1.46 > 1

|λ2,3| ≈ 1. 17 > 1

|λ4,5| ≈ 0.89 < 1.

Thus, we obtain that

|λ4,5| < 1 < |λ2,3| < |λ1| .
Hence, the positive equilibrium x̄2 = 1+

√
5

2
of Eq.(1.1) is unstable. Because it is a

saddle point. �

3. Existence of Periodic Solutions of Eq.(1.1)

Going throughout this section, we investigate the existence of periodic solutions
of Eq.(1.1).

Theorem 3.1. There are no periodic solutions of Eq.(1.1) with period two.

Proof. Suppose that α, β are real numbers, α 6= β and

· · · , α, β, α, β, α, · · ·
is a periodic solution of Eq.(1.1) with period two. Then we get from Eq.(1.1) that

α = α · β − 1, (3.1)

β = β · α− 1. (3.2)
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From (3.1) and (3.2), we obtain α = β = x̄1 or α = β = x̄2. Due to its trivial
solution of Eq.(1.1), Eq.(1.1) has not periodic solution with period two. �

Note that proofs of Theorem 3.2-Theorem 3.5 are similar to the proof of Theorem
3.1, thus we leave them to the readers.

Theorem 3.2. There are no periodic solutions of Eq.(1.1) with period three.

Theorem 3.3. There are no periodic solutions of Eq.(1.1) with period four.

Theorem 3.4. Eq.(1.1) has no periodic solutions with period five.

Theorem 3.5. Eq.(1.1) has no periodic solutions with period six.

Theorem 3.6. Eq.(1.1) has periodic solutions with prime period seven.

Proof. Let α, β, γ, φ, ϕ, ψ, θ are real numbers such that at least two are different
from each other. Assume that a solution {xn}∞n=−4 is of period seven. Therefore,
we have from Eq.(1.1)

x−4 = α,

x−3 = β,

x−2 = γ,

x−1 = φ,

x0 = ϕ,

x1 = ψ = φ · α− 1,

x2 = θ = ϕ · β − 1,

x3 = α = ψ · γ − 1 = (φ · α− 1) γ − 1 = αγφ− γ − 1, (3.3)

x4 = β = θ · φ− 1 = (ϕ · β − 1)φ− 1 = βφϕ − φ− 1, (3.4)

x5 = γ = α · ϕ− 1, (3.5)

x6 = φ = β · ψ − 1 = β (φ · α− 1)− 1 = αβφ − β − 1, (3.6)

x7 = ϕ = γ · θ − 1 = γ (ϕ · β − 1)− 1 = βγϕ− γ − 1. (3.7)

Hence, we obtain from (3.5):

x3 = α = αγφ− γ − 1 = α (αφϕ− φ− ϕ) , (3.8)

x4 = β = βφϕ− φ− 1, (3.9)

x6 = φ = αβφ − β − 1, (3.10)

x7 = ϕ = βγϕ− γ − 1 = ϕ (αβϕ − α− β) . (3.11)

Thus, we get from (3.8)-(3.11):

α (αφϕ− φ− ϕ− 1) = 0, (3.12)

ϕ (αβϕ− α− β − 1) = 0, (3.13)

βφϕ− φ− β − 1 = 0, (3.14)

αβφ− β − φ− 1 = 0. (3.15)

So, we obtain from (3.14)-(3.15):

βφϕ − αβφ = 0, (3.16)

βφ (ϕ− α) = 0. (3.17)

From (3.17), we have three cases such that β = 0 or φ = 0 or ϕ = α.
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Case 1. Let β = 0. From (3.14), we obtain φ = −1. Hence, we get from (3.12):

α (αφϕ − φ− ϕ− 1) = 0,

α (−αϕ+ 1− ϕ− 1) = 0,

α (−αϕ− ϕ) = 0,

αϕ (α+ 1) = 0.

Thus, we have the following three cases that α = 0 or α = −1 or ϕ = 0. So, we can
constitute the following table from these resuls and (3.5):

Seven periodic cycles of Eq.(1.1)
α = 0, β = 0, γ = −1, φ = −1 ⇒ (xn)

∞
n=1 = (−1,−1, 0, 0,−1,−1, 0, · · ·)

α = −1, β = 0, φ = −1 ⇒ (xn)
∞
n=1 = (0,−1,−1, 0,−ϕ− 1,−1, ϕ, · · · )

β = 0, γ = −1, ϕ = 0, φ = −1 ⇒ (xn)
∞
n=1 = (−α− 1,−1, α, 0,−1,−1, 0, · · ·)

Case 2. Let φ = 0. From (3.14), we have β = −1. Therefore we obtain from
(3.13):

ϕ (αβϕ − α− β − 1) = 0

ϕ (−αϕ− α+ 1− 1) = 0,

ϕ (−αϕ− α) = 0,

ϕα (ϕ+ 1) = 0.

So, we get the three cases ϕ = 0 or ϕ = −1 or α = 0. Therefore, we can arrange
the table from these results and (3.5):

Seven periodic cycles of Eq.(1.1)
β = −1, γ = −1, φ = 0, ϕ = 0 ⇒ (xn)

∞
n=1 = (−1,−1, 0,−1,−1, 0, 0, · · ·)

β = −1, φ = 0, ϕ = −1, α+ γ = −1 ⇒ (xn)
∞
n=1 = (−1, 0, α,−1,−α− 1, 0,−1, · · · )

α = 0, β = −1, γ = −1, φ = 0 ⇒ (xn)
∞
n=1 = (−1,−ϕ− 1, 0,−1,−1, 0, ϕ, · · · )

Case 3. Let ϕ = α. Hence we obtain followings from (3.12) and (3.13):

α (αφϕ− φ− ϕ− 1) = 0

⇒ α
(

α2φ− φ− α− 1
)

= 0

⇒ α (α+ 1) (φ (α− 1)− 1) = 0 (3.18)

ϕ (αβϕ− α− β − 1) = 0

⇒ α
(

α2β − α− β − 1
)

= 0

⇒ α (α+ 1) (β (α− 1)− 1) = 0 (3.19)

From (3.18) and (3.19), we have α = 0 or α = −1 or φ = β = 1
α−1

.

From (3.15), if α = ϕ = 0 then β + φ = −1. From (3.15), if α = ϕ = −1 then
β = −1 or φ = −1. If φ = β = 1

α−1
, we have from (3.15):

αβφ − β − φ− 1 = 0,

α

(

1

α− 1

)2

− 1

α− 1
− 1

α− 1
− 1 = 0,

α2 − α− 1

(α− 1)
2

= 0.
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Hence, we obtain α = 1−
√
5

2
or α = 1+

√
5

2
. Therefore, we get from φ = β = 1

α−1

and (3.5):

α = β = γ = ϕ = φ =
1−

√
5

2
, (3.20)

α = β = γ = ϕ = φ =
1 +

√
5

2
. (3.21)

Note that the last conditions (3.20) and (3.21) are equilibrium solutions. Thus,
they are not periodic solutions with period seven.

Hence, we can create the table from these results and (3.5):
Seven periodic cycles of Eq.(1.1)

α = ϕ = 0, γ = −1, β + φ = −1 ⇒ (xn)
∞
n=1 = (−1,−1, 0,−φ− 1,−1, φ, 0, · · · )

α = ϕ = −1, γ = 0, β = −1 ⇒ (xn)
∞
n=1 = (−φ− 1, 0,−1,−1, 0, φ,−1, · · ·)

α = ϕ = −1, φ = −1, γ = 0 ⇒ (xn)
∞
n=1 = (0,−β − 1,−1, β, 0,−1,−1, · · · )

So, Eq.(1.1) has seven periodic solutions as desired. �

The following theorem has an important role for all type of Eq.(1.2) because
Eq.(1.2) possesses an invariant interval.

Theorem 3.7 (See [2], Theorem 4.1). Let {xn}∞n=−k be a solution of Eq.(1.2). If
x−k, x−k+1, ..., x−1, x0 ∈ (−1, 0), then xn ∈ (−1, 0) for all n ≥ −k.

4. Existence of Asymptotically Seven Periodic Solutions of Eq.(1.1)

In this section, we search for an asymptotically periodic solution with period
seven. For an arbitrary m, Eq.(1.1) possesses the seven periodic solution

x7n−4 = 0,

x7n−3 = −1,

x7n−2 = −1,

x7n−1 = 0,

x7n = −m− 1,

x7n+1 = −1,

x7n+2 = m,

as Theorem 3.6.

Theorem 4.1. If the initial conditions in (−1, 0) and m ∈ (−1, 0), then Eq.(1.1)
has an asymptotically seven periodic solution.

Proof. Firstly, we set up the approximation seven periodic cycle, up to an O(t2n);

x7n−4 = 0 + a · tn, (4.1)

x7n−3 = −1 + b · tn, (4.2)

x7n−2 = −1 + c · tn, (4.3)

x7n−1 = 0 + d · tn, (4.4)

x7n = −m− 1 + e · tn, (4.5)

x7n+1 = −1 + f · tn, (4.6)

x7n+2 = m+ k · tn. (4.7)
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Hence, the coefficients of (4.1) - (4.7) must satisfy the following equations for
Eq.(1.1)

−1 + f · tn = (0 + d · tn)(0 + a · tn)− 1, (4.8)

m+ k · tn = (−m− 1 + e · tn)(−1 + b · tn)− 1, (4.9)

0 + a · tn+1 = (−1 + f · tn)(−1 + c · tn)− 1, (4.10)

−1 + b · tn+1 = (m+ k · tn)(0 + d · tn)− 1, (4.11)

−1 + c · tn+1 = (0 + a · tn+1)(−m− 1 + e · tn)− 1, (4.12)

0 + d · tn+1 = (−1 + b · tn+1)(−1 + f · tn)− 1, (4.13)

−m− 1 + e · tn+1 = (−1 + c · tn+1)(m+ k · tn)− 1. (4.14)

From (4.8) - (4.14), again up to O(t2n), we obtain that

f = 0, (4.15)

(m+ 1)b+ e+ k = 0, (4.16)

at+ c+ f = 0, (4.17)

bt−md = 0, (4.18)

(m+ 1)ta+ ct = 0, (4.19)

tb+ dt+ f = 0, (4.20)

−mtc+ et+ k = 0. (4.21)

The homogeneous system given by (4.15) - (4.21) can be solvable, if its determinant
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 1 0
0 m+ 1 0 0 1 0 1
t 0 1 0 0 1 0
0 t 0 −m 0 0 0

(m+ 1)t 0 t 0 0 0 0
0 t 0 t 0 1 0
0 0 −mt 0 t 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is equal to zero. Because it must be |t| < 1, we hope the existence of an asymptot-
ically seven periodic solution with the asymptotic approximations (4.1) - (4.7). If
this determinant is calculated, then the result is

t(t4 − 2t3 + (1−m−m2)t2 + (m+m2)t) = 0. (4.22)

Therefore, we have for m ∈ (−1, 0),

t1 = 0, (4.23)

t2 = 0, (4.24)

t3 = −m, (4.25)

t4 = m+ 1. (4.26)

Note that the existence of fifth zero of (4.22) with t5 = 1 shows that asymptotically
seven periodic solution is unstable. �

Remark. If the initial conditions in (−1, 0) and m ∈ (−1, 0) then Eq.(1.1) has an
asymptotically seven periodic solution as

· · · , 0,−1,−1, 0,−m− 1,−1,m, · · · .
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Proof. Firstly we consider from (4.1)-(4.7) and we take t1, t2, t3 or t4. Therefore,

lim
n→∞

x7n−4 = lim
n→∞

(0 + a · tn) = 0,

lim
n→∞

x7n−3 = lim
n→∞

(−1 + b · tn) = −1,

lim
n→∞

x7n−2 = lim
n→∞

(−1 + c · tn) = −1,

lim
n→∞

x7n−1 = lim
n→∞

(0 + d · tn) = 0,

lim
n→∞

x7n = lim
n→∞

(−m− 1 + e · tn) = −m− 1,

lim
n→∞

x7n+1 = lim
n→∞

(−1 + f · tn) = −1,

lim
n→∞

x7n+2 = lim
n→∞

(m+ k · tn) = m.

Thus, asymptotically seven periodic cycle of Eq.(1.1) has been completed as
desired. �

5. Numerical Examples

Now, we present some figures for Eq.(1.1) in order to confirm the above theoret-
ical results.

Example 5.1. With the initial conditions x−4 = −1, x−3 = −1, x−2 = 0, x−1 = 4
and x0 = −1, Eq.(1.1) has seven periodic solutions. Moreover, the cycle of these
periodic solutions is

(−5, 0,−1,−1, 0, 4,−1, · · ·) .
Figure 1 verify our theoretical results (see Theorem 3.6).

Figure 1. Plot of Eq.(1.1) with the initial conditions x−4 = −1,
x−3 = −1, x−2 = 0, x−1 = 4 and x0 = −1.

Example 5.2. With the initial conditions x−4 = −0.45, x−3 = −0.9, x−2 = −0.2,
x−1 = −0.55 and x0 = −0.35, Eq.(1.1) has asymptotically seven periodic solutions.
Figure 2 verify our theoretical results (Theorem 4.1).
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Figure 2. Plot of Eq.(1.1) with the initial conditions x−4 =
−0.45, x−3 = −0.9, x−2 = −0.2, x−1 = −0.55 and x0 = −0.35.

6. Conclusion

This study discussed about stability analysis and periodic solutions of Eq.(1.1).
In Section 2 we proved that the equilibrium points of Eq.(1.1) are unstable that both
are saddle point. In Section 3 we showed that the existence of periodic solutions
of Eq.(1.1). In Section 4 we proved that Eq.(1.1) has an asymptotically seven
periodic solution. In Section 5 we given two numerical examples so as to confirm
our theoretrical results.
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