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Abstract

In this paper, we investigate the equilibrium points of following a system of difference equations
xn+1 = xn−2yn − 1, yn+1 = yn−2xn − 1. We also study the asymptotic stability of related system of
difference equations. Further we examine the periodic solutions of related system with period two.
Additionally, we find out the invariant interval and periodic cycles of related system of difference
equations.
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1. Introduction

Difference equations and their systems play a crucial role in different fields of science. Many
scientific fields need mathematical models to interpret their results. Especially mathematical models
via discrete variables are related to this topic. For the last decades, many scientists have studied
stability of equilibrium points, periodicity and boundedness of difference equations or their systems.
There are many paper related to difference equations and their systems for examples:

Xianyi et al, in [30], investigated the global asymptotic stability of following rational difference
equation

xn+1 =
xnxn−1 + α

xn + xn−1

.

Yalçınkaya et al, in [32], studied the stability of following system

zn+1 =
zntn−1 + α

zn + tn−1

, tn+1 =
tnzn−1 + α

tn + zn−1

.
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They obtained a sufficient condition for global asymptotic stability of related system.
De Vault et al, in [4], investigated global behaviours of following difference equation

yn+1 = A+
yn
yn−1

.

Abu Saris et al, in [1], studied global asymptotic stability of following difference equation

xn+1 = A+
xn

xn−k

.

Papaschinopoluos et al, in [21], considered the following system of difference equations

xn+1 = A+
yn
yn−p

, yn+1 = A+
xn

xn−p

.

They obtained results related to global asymptotic stability of positive equilibrium point.
Kent et al, in [10], studied long-term behaviours of solutions of difference equation

xn+1 = xnxn−1 − 1.

Moreover, in [31], Wang et al and in [18], Liu et al examined convergence of solutions of related
difference equation about equilibrium points.

In [12], Kent et al investigated the periodicity of solutions, existence of bounded or unbounded
of solutions and stability of solutions of difference equation

xn+1 = xn−1xn−2 − 1.

Kent et al, in [13], studied the periodicity, stability and unbounded solutions of difference equation

xn+1 = xnxn−2 − 1.

Further, there are many books and papers related to dynamical systems, see [1] - [32].
In this paper, we investigate the equilibrium points of following a system of difference equations

xn+1 = xn−2yn − 1, yn+1 = yn−2xn − 1, n = 0, 1, ..., (1.1)

where all initial values are real numbers. We also study the asymptotic stability of related system of
difference equations. Furthermore, we examine the existence of periodic solutions of related system.

From here to the end of this section, we show useful definitions and theorems which are used
during this study.

Firstly, let us introduce discrete dynamical system of the form

xn+1 = f (xn, xn−1, xn−2, yn, yn−1, yn−2) , yn+1 = g (xn, xn−1, xn−2, yn, yn−1, yn−2) , (1.2)

n = 0, 1, ..., where f : I3 × J3 → I and g : I3 × J3 → J are continuously differentiable functions
and I, J are some intervals of real numbers. Moreover, a solution {(xn, yn)}∞n=−1 of system (1.2) is
uniquely determined by initial values (xi, yi) ∈ I × J for i ∈ {−1, 0}.

Definition 1.1. Along with the system (1.2), we consider the corresponding vector map F =
{f, xn, xn−1, g, yn, yn−1}. A point (x̄, ȳ) is called an equilibrium point of the system (1.2) if

x̄ = f (x̄, x̄, x̄, ȳ, ȳ, ȳ) , ȳ = g (x̄, x̄, x̄, ȳ, ȳ, ȳ) .

The point (x̄, ȳ) is also called a fixed point of the vector map F.
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Definition 1.2. Let (x̄, ȳ) be an equilibrium point of the system (1.2).

(i) An equilibrium point (x̄, ȳ) of system (1.2) is called stable if, for every ε > 0, there exists δ > 0
such that, for every initial value (x−i, y−i) ∈ I × J , with

0∑
i=−1

|xi − x̄| < δ,
0∑

i=−1

|yi − ȳ| < δ,

implying |xn − x̄| < ε and |yn − ȳ| < ε for n ∈ N.

(ii) An equilibrium point (x̄, ȳ) of system (1.2) is called unstable, if it is not stable.

(iii) An equilibrium point (x̄, ȳ) of system (1.2) is called locally asymptotically stable if it is stable
and if, in addition, there exists γ > 0 such that

0∑
i=−1

|xi − x̄| < γ,

0∑
i=−1

|yi − ȳ| < γ,

and (xn, yn) → (x̄, ȳ) as n → ∞.

(iv) An equilibrium point (x̄, ȳ) of system (1.2) is called a global attractor if (xn, yn) → (x̄, ȳ) as
n → ∞.

(v) An equilibrium point (x̄, ȳ) of system (1.2) is called globally asymptotically stable if it is stable
and a global attractor.

Definition 1.3. Let (x̄, ȳ) be an equilibrium point of the map F where f and g are continuously
differentiable functions at (x̄, ȳ). The linearized system of system (1.2) about the equilibrium point
(x̄, ȳ) is

Xn+1 = F (Xn) = BXn,

where

Xn =


xn

xn−1

xn−2

yn
yn−1

yn−2


and B is a Jacobian matrix of system (1.2) about the equilibrium point (x̄, ȳ).

Definition 1.4. Assume that Xn+1 = F (Xn) , n = 0, 1, · · · , is a system of difference equations
such that X̄ is a fixed point of F . If no eigenvalues of the Jacobian matrix B about X̄ have absolute
value equal to one, then X̄ is called hyperbolic. Otherwise, X̄ is said to be nonhyperbolic.

Theorem 1.5 (Linearized Stability Theorem [14], p.11). Assume that

Xn+1 = F (Xn) , n = 0, 1, · · · ,

is a system of difference equations such that X̄ is a fixed point of F .

(i) If all eigenvalues of the Jacobian matrix B about X̄ lie inside the open unit disk |λ| < 1, that is,
if all of them have absolute value less than one, then X̄ is locally asymptotically stable.

(ii) If at least one of them has a modulus greater than one, then X̄ is unstable.
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2. Equilibrium Points of System (1.1)

In this here, we examine the equilibrium points of System (1.1).
System (1.1) has two equilibrium points such that

(x̄1, ȳ1) =

(
1−

√
5

2
,
1−

√
5

2

)
,

(x̄2, ȳ2) =

(
1 +

√
5

2
,
1 +

√
5

2

)
.

Since 1+
√
5

2
≈ 1.618, the elements of second equilibrium point is equal to the Golden Ratio.

3. Existence of Periodic and Bounded Solutions of System (1.1)

In this section, we investigate the periodic behaviours of solutions of System (1.1). Firstly we
find out the two periodic solutions of System (1.1). Further, we determine existence of bounded of
solutions of System (1.1). Moreover we study the periodic cycles of solutions of System (1.1).

Theorem 3.1. System (1.1) has periodic solutions with period two.

Proof . Assume that system (1.1) has two periodic solutions. Thus we have for n ≥ 0:

x2n = a, x2n−1 = b, y2n = c, y2n−1 = d, (3.1)

where a ̸= b and c ̸= d. Hence we get from system (1.1) and (3.1):

x2n = x2n−3y2n−1 − 1 ⇒ a = b · d− 1, (3.2)

y2n = y2n−3x2n−1 − 1 ⇒ c = d · b− 1, (3.3)

x2n+1 = x2n−2y2n − 1 ⇒ b = a · c− 1, (3.4)

y2n+1 = y2n−2x2n − 1 ⇒ d = c · a− 1. (3.5)

Therefore we obtain from (3.2)-(3.3) a = c and similarly from (3.4)-(3.5) b = d. According to these,
we can write the following equations:

a = b2 − 1, (3.6)

b = a2 − 1. (3.7)

Now, we write (3.7) into (3.6). Thus we have the following:

a = (a2 − 1)2 − 1.

When this equation rearrange, we obtain that

a(a+ 1)(a2 − a− 1) = 0. (3.8)

From this we obtain the four roots of (3.8) as

a = 0,

a = −1,

a =
1−

√
5

2
= x̄1 = ȳ1,

a =
1 +

√
5

2
= x̄2 = ȳ2.
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If a = 0 or a = −1, then System (1.1) has two periodic cycle such as

{(xn, yn)} = {· · · , (−1,−1), (0, 0), (−1,−1), · · · } .

Since the other values of a are equal to elements of eqilibrium points, they are equilibrium solutions.
So, the proof completed as desired. □

Now we investigate the invariant interval of System (1.1).

Theorem 3.2. If the initial values are in (−1, 0) then all solutions of System (1.1) are bounded from
below and above.

Proof . We assume the initial values of System (1.1) x−2, x−1, x0, y−2, y−1, y0 ∈ (−1, 0). Hence we
have from System (1.1):

x1 = x−2y0 − 1 ∈ (−1, 0),

y1 = y−2x0 − 1 ∈ (−1, 0),

x2 = x−1y1 − 1 ∈ (−1, 0),

y2 = y−1x1 − 1 ∈ (−1, 0).

From these and by induction, we obtain that xn, yn ∈ (−1, 0) for all n ≥ 1. □

Remark 3.3. There are two equations corresponding to the odd and even arguments of xn and yn
such that

un+1 = vn−1 (unvn−1un−2 − un − un−2) ,

vn+1 = un−1 (vnun−1vn−2 − vn − vn−2) .

Firstly we discuss the odd terms of xn. Hence we have from System (1.1):

x2n+3 = x2ny2n−2 − 1

x2n+3 = (x2n−3y2n−1 − 1) (y2n−1x2n+1 − 1)− 1

x2n+3 = y2n−1 (x2n−3y2n−1x2n+1 − x2n+1 − x2n−3) . (3.9)

Similarly we can write the even terms of xn and the odd and even terms of yn as follows:

x2n+4 = y2n (x2n−2y2nx2n+2 − x2n+2 − x2n−2) , (3.10)

y2n+3 = x2n−1 (y2n−3x2n−1y2n+1 − y2n+1 − y2n−3) , (3.11)

y2n+4 = x2n (y2n−2x2ny2n+2 − y2n+2 − y2n−2) . (3.12)

Therefore x2n+1 and x2n+2 satisfy the following equation

un+1 = vn−1 (unvn−1un−2 − un − un−2) (3.13)

where n ∈ N and un, vn ∈ (−1, 0).
Likewise y2n+1 and y2n+2 satisfy the equation

vn+1 = un−1 (vnun−1vn−2 − vn − vn−2) (3.14)

where n ∈ N and un, vn ∈ (−1, 0).
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From (3.13) and (3.14), we obtain the following eight equilibrium points:

ū1 = v̄1 = −1,

ū2 = v̄2 = 0,

ū3 = v̄3 =
1−

√
5

2
,

ū4 = v̄4 =
1 +

√
5

2
.

Now we take the f and g functions corresponding to (3.13) and (3.14) respectively:

f (u, v, w) = g (u, v, w) = w (uwv − u− v) .

where u, v, w ∈ (−1, 0). Then we obtain the followings:

fu = gu = w2v − w > 0,

fv = gv = w2u− w > 0,

fw = gw = 2uvw − u− v > 0.

So, the f and g functions are strictly increasing in each argument.

Theorem 3.4. Let the initial values be in (−1, 0).

(H1) x−2 < x̄1, x−1 > x̄1, x0 < x̄1, y−2 < ȳ1, y−1 > ȳ1 and y0 < ȳ1.

(H2) x−2 > x̄1, x−1 < x̄1, x0 > x̄1, y−2 > ȳ1, y−1 < ȳ1 and y0 > ȳ1.

(a) If (H1) holds then there is an N ∈ N0 such that x2n+1 > x̄1, x2n+2 < x̄1, y2n+1 > ȳ1 and
y2n+2 < ȳ1.

(b) If (H2) holds then there is an N ∈ N0 such that x2n+1 < x̄1, x2n+2 > x̄1, y2n+1 < ȳ1 and
y2n+2 > ȳ1.

Proof . According to Theorem 3.2, if the initial values x−2, x−1, x0, y−2, y−1, y0 ∈ (−1, 0) then we
have xn, yn ∈ (−1, 0) for all n ≥ 1. As the proof of (b) is similar to (a), we will prove only (a). From
(H1), we have −1 < x−2, x0, y−2, y0 < x̄1 = ȳ1. So we obtain that

x1 = x−2y0 − 1 > x̄2
1 − 1 = x̄1,

y1 = y−2x0 − 1 > ȳ21 − 1 = ȳ1.

Hence we have that x̄1 < x1 < 0, ȳ1 < y1 < 0. From (H1), we get x̄1 < x−1 < 0, ȳ1 < y−1 < 0.
Therefore we obtain the followings:

x2 = x−1y1 − 1 < x̄2
1 − 1 = x̄1,

y2 = y−1x1 − 1 < ȳ21 − 1 = ȳ1.

So, by induction we obtain that

x2k+3 = x2ky2k+2 − 1 > x̄2
1 − 1 = x̄1,

x2k+4 = x2k+1y2k+3 − 1 < x̄2
1 − 1 = x̄1,

y2k+3 = y2kx2k+2 − 1 > ȳ21 − 1 = ȳ1,

y2k+4 = y2k+1x2k+3 − 1 < ȳ21 − 1 = ȳ1.

Therefore the proof completed. □
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Theorem 3.5. Suppose that x−2, x−1, x0, y−2, y−1, y0 ∈ (−1, 0) and (H1) or (H2) hold. Then both
{xn}∞n=−2 and {yn}∞n=−2 converge to a two-cycle {−1, 0}.

Proof . Firstly, from Theorem 3.2, we know that xn, yn ∈ (−1, 0), for n ≥ 1.

(a) If for some N ≥ −1, un > ū3 for n ≥ N then (un)
∞
n=−1 of (3.13) converges to ū2 = 0 where

un ∈ (−1, 0) = (ū1, ū2) for n ≥ −1.

(b) If for some N ≥ −1, un < ū3 for n ≥ N then (un)
∞
n=−1 of (3.13) converges to ū1 = −1 where

un ∈ (−1, 0) = (ū1, ū2) for n ≥ −1.

(c) If for some N ≥ −1, vn > v̄3 for n ≥ N then (vn)
∞
n=−1 of (3.14) converges to v̄2 = 0 where

vn ∈ (−1, 0) = (v̄1, v̄2) for n ≥ −1.

(d) If for some N ≥ −1, vn < v̄3 for n ≥ N then (vn)
∞
n=−1 of (3.14) converges to v̄2 = −1 where

vn ∈ (−1, 0) = (v̄1, v̄2) for n ≥ −1.

Now we will prove (a). The proofs of (b), (c) and (d) are similar to (a), so we leave it to readers.
We know from Theorem 3.4:

un ∈ (ū3, ū2), n ≥ N. (3.15)

Let I = lim
n→∞

inf un and S = lim
n→∞

supun. Hence we get ū3 ≤ I ≤ S ≤ ū2 = 0.

We assume that I = ū3. From (3.15), there is an ε > 0 such that

I + ε < uN , uN+1, uN+2 < ū2.

Since f is a monotonic function, we can write

f(x, x, x) > x for x ∈ (ū3, ū2). (3.16)

Hence we get
uN+3 = f(uN+2, uN+1, uN) > f(I + ε, I + ε, I + ε) > I + ε.

Therefore we obtain by induction un > I+ε, n ≥ N . And so lim
n→∞

inf un ≥ I+ε. It is a contradiction.

We assume that I ∈ (ū3, ū2). Let (unk
)k∈N be a subsequence of (un)

∞
n=−1 such that lim

k→∞
unk

= I.

Thus we can denote the subsequences such that there are limits: lim
k→∞

unk−1 = K−1, lim
k→∞

unk−2 = K−2

and lim
k→∞

unk−3 = K−3. From (3.16), we have

f(K−1, K−2, K−3) = I < f(I, I, I).

Hence there is an i0 ∈ {1, 2, 3} such that K−i0 < I. Otherwise, K−i0 ≥ I for i = 1, 2, 3 and
monotonicity of f we have

f(I, I, I) ≤ f(K−1, K−2, K−3) = I < f(I, I, I).

This is a contradiction. On the other hand, if K−i0 < I then it contradicts the choice of I. So I
cannot be in (ū3, ū2). Therefore we obtain ū2 ≤ I ≤ S ≤ ū2. Hence lim

n→∞
un = ū2 = 0. The proof of

(a) is completed. □



194 Taşdemir

Example 3.6. Consider the System (1.1) with the initial values x−2 = −0.9, x−1 = −0.2, x0 = −0.7,
y−2 = −0.8, y−1 = −0.3 and y0 = −0.9. Then System (1.1) is bounded from below and above.
Moreover, the solutions of System (1.1) converges to a two periodic cycle {−1, 0} such as Theorem
3.5. We can easily see the followings:

lim
n→∞

x2n = −1, lim
n→∞

x2n+1 = 0, lim
n→∞

y2n = −1, lim
n→∞

y2n+1 = 0.

Figure 1 is drawn by using the Mathematica. (See Figure 1)

Figure 1: The plot of System (1.1) with x−2 = −0.9, x−1 = −0.2, x0 = −0.7, y−2 = −0.8, y−1 = −0.3 and y0 = −0.9.

4. Stability Analysis of System (1.1)

This section, we study the stability of System (1.1). Moreover, we determine that both negative
and positive equilibrium points of System (1.1) are unstable.

Theorem 4.1. Equilibrium point (x̄1, ȳ1) of System (1.1) is locally unstable.

Proof . Firstly we study linearized form of System (1.1). For this, we consider the transformation:

(xn, xn−1, xn−2, yn, yn−1, yn−2) → (f, f1, f2, g, g1, g2) ,

where

f = xn−2yn − 1,

f1 = xn,

f2 = xn−1,

g = yn−2xn − 1,

g1 = yn,

g2 = yn−1.

Therefore we have the Jacobian matrix about equilibrium point (x̄, ȳ):

B(x̄, ȳ) =


0 0 y x 0 0
1 0 0 0 0 0
0 1 0 0 0 0
y 0 0 0 0 x
0 0 0 1 0 0
0 0 0 0 1 0

 .
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Thus, the linearized system about the equilibrium point (x̄, ȳ) =
(

1−
√
5

2
, 1−

√
5

2

)
is XN+1 = B(x̄, ȳ)Xn

where Xn = ((xn, xn−1, xn−2, yn, yn−1, yn−2))
T and

B(x̄, ȳ) =


0 0 1−

√
5

2
1−

√
5

2
0 0

1 0 0 0 0 0
0 1 0 0 0 0

1−
√
5

2
0 0 0 0 1−

√
5

2

0 0 0 1 0 0
0 0 0 0 1 0


So, the characteristic equation of B(x̄, ȳ) is

λ6 +

(√
5− 3

2

)
λ4 +

(√
5− 1

)
λ3 +

3−
√
5

2
= 0. (4.1)

Hence, we have six roots of Eq.(4.1):

|λ1| = |−1.11508| = 1.11508,

|λ2,3| = |0.248524± 0.701773i| = 0.744 48,

|λ4,5| = |0.65298± 0.687037i| = 0.947 84,

|λ6| = |−0.687925| = 0.687925.

Due to
|λ1| > 1 > |λ4,5| > |λ2,3| > |λ6| ,

and from linearized stability theorem, five roots of the characteristic equation lie inside the unit disk
but the other root lie outside the unit disk. So, the negative equilibrium of System (1.1) is locally
unstable. □

Theorem 4.2. Equilibrium point (x̄2, ȳ2) of System (1.1) is locally unstable.

Proof . Firstly we study linearized form of System (1.1). For this, we consider the transformation:

(xn, xn−1, xn−2, yn, yn−1, yn−2) → (f, f1, f2, g, g1, g2) ,

where

f = xn−2yn − 1,

f1 = xn,

f2 = xn−1,

g = yn−2xn − 1,

g1 = yn,

g2 = yn−1.
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Therefore we have the Jacobian matrix about equilibrium point (x̄, ȳ):

B(x̄, ȳ) =


0 0 y x 0 0
1 0 0 0 0 0
0 1 0 0 0 0
y 0 0 0 0 x
0 0 0 1 0 0
0 0 0 0 1 0

 .

Thus, the linearized system about the equilibrium point (x̄, ȳ) =
(

1+
√
5

2
, 1+

√
5

2

)
is XN+1 = B(x̄, ȳ)Xn

where Xn = ((xn, xn−1, xn−2, yn, yn−1, yn−2))
T and

B(x̄, ȳ) =


0 0 1+

√
5

2
1+

√
5

2
0 0

1 0 0 0 0 0
0 1 0 0 0 0

1+
√
5

2
0 0 0 0 1+

√
5

2

0 0 0 1 0 0
0 0 0 0 1 0


So, the characteristic equation of B(x̄, ȳ) is

λ6 −

(√
5 + 3

2

)
λ4 −

(
1 +

√
5
)
λ3 +

3 +
√
5

2
= 0. (4.2)

Hence, we have four roots of Eq.(4.2):

|λ1| = |λ2| = |−1.21673 + 0.709835i| = 1.4087,

|λ3| = |λ4| = |−0.199036 + 0.873464i| = 0.895 85,

|λ5| = |0.815421| = 0.815421,

|λ6| = |2.01611| = 2.01611.

Because of
|λ5| < |λ3| = |λ4| < 1 < |λ1| = |λ2| < |λ6| ,

and from linearized stability theorem, three roots of the characteristic equation lie inside the unit
disk but the other roots lie outside the unit disk. So, the positive equilibrium of System (1.1) is
locally unstable. □

5. Conclusion

In this study, we determine the equilibrium points of System (1.1). We examine the periodicity
of solutions of System (1.1) with period two. Moreover we find out that if the initial values of
System (1.1) be in (−1, 0) then the solutions of System (1.1) have bound from above and below. The
solutions of System (1.1) also converge to two periodic cycle if the initial values in (−1, 0). Finally,
we investigate the stability of two equilibrium points of System (1.1).
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[13] Kent CM, Kosmala W, Stević S. On the difference equation xn+1 = xnxn−2 − 1. Abstr. Appl. Anal. 2011; 2011,

pp. 1-15.
[14] Kocic VL, Ladas G. Global behavior of nonlinear difference equations of higher order with applications. Vol. 256.

Springer Science & Business Media, 1993.
[15] Kulenovic MR, Ladas G. Dynamics of second order rational difference equations: with open problems and con-

jectures. Chapman and Hall/CRC, 2001.
[16] Kulenovic MR, Nurkanovic M. Asymptotic behavior of a system of linear fractional difference equations. J.

Inequal. Appl. 2005; 2005 (2), pp. 1-17.
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