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1. Introduction

In everyday life, chaos described as disorder and 
irregularity, has regularity in itself. These systems 
exhibiting complex dynamic behaviors have been 
modelled and explained using chaotic systems.  
These systems have found significant application 
areas in science and engineering since their 
development by Lorenz to model weather events 
in 1963 (Lorenz, 1963). Some important ones 
among these application areas are cryptography; 
secure communication, biomedical, robotics.

As a result of the intensive use of Internet in recent 
years, the need for secure communication with the 
encryption of information has arisen as the trade 
has moved to electronic media. Nowadays, credit 
cards and other e-commerce information can be 
easily stolen and used in digital environment. 
Also, mobile phone conversations can be tapped. 
Digital information theft has forced banks and 
other institutions to take new precautions on 
infrastructure for secure communication. New 
computer programs emerging in this direction 
use encryption methods for data communication. 
Chaotic systems have been widely used for 
data encryption due to their nonlinear complex 
behaviors, being sensitive to the initial conditions 
and it is highly difficult to predict.

Scientists have proposed many chaotic models 
and new methods based on these models for 
encryption. Synchronization is one of the most 
important building blocks for data encryption. 

“Synchronous” has the meaning of occurring at the 
same time or being in the same moment. Besides, 
synchronization means harmonization in terms 
of phase and frequency between two changing 
signals. Pecora and Carroll showed in 1990 that 
the chaotic systems could be synchronized by 
connecting them to common signals in the study 
of synchronization in systems, with examples of 
Lorenz and Rösler Chaotic Systems (Pecora & 
Caroll, 1990). There have been many studies on 
synchronization from 1990 until the present day. 
Some of the important studies on this topic over 
the past few years are as follows: Vaidyanathan 
and Azar performed adaptive synchronization of 
the unknown system parameters with the novel 
chaotic system and supported the results with 
Lyapunov stability theory (Vaidyanathan & Azar, 
2015). In another study, Khan et al. performed 
the synchronization of the Genesio and Lü chaotic 
systems by using the active control method (Khan 
et al., 2016). In a different study, Hou designed a 
novel hyper with the evolutionary programming 
(EP)-based PID controller, and experimentally 
proved the validity of the synchronization he 
proposed (Hou, 2017).

Chaotic systems can be used to analyse and 
control many dynamic structures. One of these 
structures is represented by the BLDC motors. 
Brushless DC motors have found widespread use 
especially in electric vehicles and electric bicycles, 
which have been on the agenda in recent years. 
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Different types of controller approaches have been 
needed so that these motors can be operated at the 
desired stability and at high efficiency points. In 
line with these views, Ibrahim et al. performed 
speed control of BLDC motor in Matlab/Simulink 
environment using PID controller based on 
particle swarm optimization (BF), and evaluated 
the efficiency of the proposed method according 
to the steady-state error, rise time, settling time 
and maximum overshoot, performance criteria 
(Ibrahim et al., 2014). Some important studies 
performed for the BLDC engine are as follows. 
Varshney et al. investigated the speed response 
of a BLDC motor in a simulation environment 
using a fuzzy PID controller under-sudden and 
gradual change load condition (Varshney et al., 
2017). Also, Rajagopal et al. made investigations 
about the dynamic properties of the fractional 
order BLDC motor model, and performed its 
chaos control of the fractional order (Rajagopal 
et al., 2017). 

In recent years, measures have been taken to reduce 
the emission values of vehicles with internal 
combustion engines that cause greenhouse gases. 
Although internal combustion engine volumes 
have been reduced recently, a large number of 
studies have also been carried out to make zero 
emission electric vehicles more efficient. Most 
electric vehicles use BLDC motors. The energy 
consumption and performance of BLDC motors 
vary under different operating conditions. The 
better performance would mean increased vehicle 
range and lower energy consumption. In the 
literature, there are very few studies related to 
the control of chaotic models of BLDC motors. 
In addition, the synchronization method is often 
used for communication and encryption purposes. 
Therefore, this investigation will serve as a 
good example for the use of synchronization as 
a control method. This study will also provide 
a novel approach to the issues regarding to the 
control of chaotic models of BLDC motors in the 
literature.In the current introduction, the definition 
of chaos, the importance of cryptography, the 
synchronization in chaotic systems, the important 
studies in the related literature and finally the 
control of BLDC motors have been presented. The 
chaotic structure of the BLDC motors is discussed 
mainly in Section 2, whereas section 3 is focused 
on the control design synchronized with the SMC 

method. Section 4, however, presents the stability 
analysis and the PI controller structure, whilst the 
adaptive synchronization control of the BLDC is 
discussed in section 5. The numerical simulation 
results are also given in Section 6. Finally, Section 
7 is structured based on the overall results obtained 
from the investigation and draws a conclusion. 

2. The Model of BLDC Motor

The chaotic model of the BLDC motor used as the 
master system in the synchronization method can 
be given as follows according to the references 
(Hemati & Leu, 1992; Premkumar & Manikandan, 
2015; Rajagopal et al., 2017).

The master system:
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The slave systems for control input ( iu ) can be 
expressed as follows:
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The unknown parameters of the slave system are 
defined as , , , , , ,q d Lv v Tρ δ σ η 

    .

The synchronization errors are required to be 
zero for full synchronization of master and slave 
systems. In this case, the synchronization error can 
be shown mathematically as the lim 0it

e
→∞

=
,
 where 

, ,i x y z= and ie is described as = −i m se i i .

The error dynamics can be defined as, i m se i i= − 

 .

According to the error dynamics described above, 
the error dynamics structure of master and slave 
systems can be defined as follows:
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3. The Synchronization Controller 
Design Using SMC Method

The SMC has a robust control algorithm against 
dynamic uncertainty. The SMC is performed in 
two steps as a sliding surface and as a switching 
control law. For the sliding phase in the SCM 
have been chosen the integral sliding surface. 
The integral sliding surface was described by 
Rajagopal, K. et al in 2017 (Rajagopal et al., 
2017) as follows: ( )i i i is e k e dτ τ= + ∫ , where 

, ,i x y z= 0ik > . 

The time derivative of the sliding surface can be 
shown as i i i is e k e= +   If the 0s = and 0is = , the 
system is in the sliding-mode phase.

The parameter estimation errors are given by:

qv q qe v v= −  , pe p p= −  ,
dv d de v v= −  , eδ δ δ= −  ,

eσ σ σ= −  , eη η η= −   and 
LT L Le T T= −  .

The SMC can be expressed as follows: 

,
x m s

y m s

z m s

e x x
e y y
e z z

= − 
= − 
= −                                                   

(4)

The ( )xe t , ( )ye t and ( )ze t  in the Equation (4) have 
been show synchronization errors. 
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By the definitions of the reaching law (Köse, 
2017), sgn( )i i i i is s k sγ= − − , , ,i x y z= and 0iγ >  
and 0ik > are the sliding surface gains. If the 
access surface is selected as this,
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According to integral sliding mode control 
(ISMC), i i i is e k e= +  can be expressed as.
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As controller inputs xu , yu and zu  can be defined 
as below equality (8).
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Constants xλ , yλ , zλ , xγ , yγ  and zγ  given in 
Equation (8) are positive integers.

4. The Stability Analysis of 
Synchronization Controller

The results are confirmed using Lyapunov stability 
theory (Khalil, 2001). For stability control, the 
following quadratic Lyapunov function is used:

2 2 21( , , ) ( ),
2

= + +x y z x y zV s s s s s s
 	        

(9)

The time-derivative of V is calculated as,
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Simplifying V equation, it is obtained:
2 2 2,x x x x y y y y z z z zV s k s s k s s k sγ γ γ= − − − − − −

       
(12)

xγ , yγ , zγ , xk , yk and zk  are positive constants, but 
V  is a negative definite function.

The BLDC master and slave system have exhibited 
chaotic oscillations using the initial condition 
values. The starting conditions of the master 
system have been used in Reference 14. The values 
for the master system parameters are: 0.168qv = ,

60ρ = , 20.66dv = , 0.875δ = , 0.26η = , 0.53LT =
and 4.55.σ = The master system state variables 
of the initial condition values are: (0) 3.63x = , 

(0) 56.02y = , (0) 0.29z = . The values for the slave 
system parameters 0.160qv = , 58ρ = , 21dv = ,

0.8δ = , 0.23η = , 0.52LT = and 4.40σ =  have 
been chosen. The slave system state variables of 
the initial condition values (0) 3.65x = , (0) 56y =

The Control of Brushless DC Motor for Electric Vehicle by Using Chaotic Synchronization Method
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and (0) 0.35z =  have been chosen. The designed 
SMC control structure is shown in Fig. 1.

Other study proposes a proportional-integral (PI) 
control structure as it is shown in Fig. 2.

Master
Chaotic
System

Xm,Ym,Zm ex,ey,ez SMC
Controller

u(t) Slave
Chaotic
System

Xz,Yz,Zz

Figure 1. Block diagram of chaotic synchronization 
using SMC control method

The PID control method is a reference control 
method that has been used since 1940s and is 
widely spread in practical applications. The 
PI control scheme given in Fig. 2 is used in 
Reference 7 and is preferred because it performs 
well in nonlinear chaotic system control. The 
artificial bee colony algorithm was developed 
being inspired by the honey bees’ intelligent 
behaviour in honey (Karaboga & Basturk, 2007). 

Master
Chaotic
System

Xm,Ym,Zm ex,ey,ez

Programming
Algorithm for

Optimal PI Tuning

PI
Controller

u(t) Slave
Chaotic
System

Xz,Yz,Zz

Figure 2. Block diagram of chaotic synchronization 
using PI control method

This algorithm, which is heuristic, have given 
very good answers in optimization problems. 
This control system has been designed by using 
heuristic artificial bee colony programming 
algorithm for optimal PI tuning.  In this system, 
control error indices as IAE (integral of the 
absolute error), ISE (integral of square error), 
ITAE (the integral of the time multiplied by the 
absolute value of the error) and ISCI (the integral 
of the system responses have been examined. The 
slave system in Fig. 5(b) is identical to the master 
system except for the initial conditions (0) 0.23=z  
The initial conditions and constants of the slave 
system in Fig. 5(c), as given above are all different 
from the master system. The convergence curves 
for these error indices used for optimization are 
given in Fig. 3. Optimal and values for the PI 
controller coefficients are shown in Table 1.

Table 1. Optimal Kp and Ki values for the PI controller

State 
Variables

Kp Ki

x 44.6056 11.6178
y 48.9657 46.7987
z 50.3248 39.0856

Figure 3. Converge curves of ISE (integral of square)

5. Adaptive Synchronization Control 
of The BLDC Motor

The adaptive control is a control method that can 
adjust itself to the changes of the system depending 
on the parameter estimated. In addition, Lyapunov 
stability theory can be used to control the stability 
of systems based on modified estimates. The 
adaptive control design for this system has been 
performed step by step as indicated below.

The master and slave system Equation (1) and (2) 
of the BLDC motor to be controlled are defined. 
Equation (3) was obtained by using these equality 
definitions. Equation (3) as depending on error 
dynamics can be expressed as in Equation (13). 
The error dynamics, 
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where , ,x y zu u u  are adaptive controllers to be 
designed using the states , ,x y z .
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Using the equations (13) and (14), the following 
closed loop error dynamics can be obtained.
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The parameter estimation errors are described 
as follows:

pe p p= −  , eδ δ δ= −  , eσ σ σ= −   and eη η η= −  .  

If the system synchronization errors are reorganized,

                                                

                                                 ,

( () )

=

=

= +

− 
− 
− + + − 







x

y y

z x x m x m

z x x

y y

z y y z z

e e
e e e
e e e e e e y e x e

e k e
k e
e k e

ρ

δ

σ η              

(16)

The derivative of parameter estimation errors 
is received,

= ( )= ( )
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and the Lyapunov approach is applied.
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If the derivative of the above system is derived, 
the following equation is obtained.
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According to Eq. (20), the parameters are defined 
as follows:
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The starting conditions of the master and slave 
systems have been used in the Reference 14 for 
numerical results. The numerical results applied 

using the above mathematical definitions are given 
in Section 6. In addition, the designed adaptive 
control structure is given in Fig. 4.

Master
Chaotic
System

Xm,Ym,Zm ex,ey,ez Adaptive
Controller

u(t) Slave
Chaotic
System

Xz,Yz,Zz

Figure 4. Block diagram of chaotic system using 
adaptive control method

6. Simulation Results

The closed loop synchronization control structures 
designed and developed in sections 3, 4 and 5 were 
used for simulation results. The simulation results 
of the BLDC motor are shown in Figures 5, 6, 7, 
8, 9, 10, 11, 12, and 13 depending on the starting 
conditions given above. The simulated results 
obtained in Fig.5 and Fig.6 are no controlled or 
open loop system responses. The results obtained 
in Figures 5 (a), 5 (b) and 5 (c) clearly show that a 
very small change in initial conditions can change 
the chaotic behavior too much. In addition, the 
simulation results have shown the performances 
of the controllers on the system.

(a)

(b)
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(c)

Figure 5. The 3D state portrait for master (a) and 
slave (b-c) chaotic system models of BLDC motor

(a)

(b)

(c)

Figure 6. The time domain waveform of the x, 
y and z 1D state variables for master and slave 

chaotic systems 

The sliding mode controller method described in 
Section 3 was applied to the closed loop control 
structure based on Fig. 1, and the obtained 

simulation results are shown in Figures 7, 8, and 
9. The switching control changes for xu , yu and zu
controller outputs are given in Fig. 7. 

(a)

(b)

(c)

(d)

Figure 7. The switching input swxu , swyu and swzu and

xu , yu and zu controller outputs 
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(a)

(b)

(c)

Figure 8. Simulation results of x, y and z variables 
obtained using SMC method 

(a)

(b)

(c)

Figure 9. The x, y and z state variable errors obtained 
using closed loop system based on SMC system 

The PI controller method described in Section 4 
was applied to the closed loop control structure 
based on Fig. 2, and the obtained simulation results 
are shown in Figures 10 and 11. The adaptive 
controller method described in Section 5 was 
applied to the closed loop control structure based 
on Fig. 4, and the obtained simulation results are 
illustrated in Figures 12 and 13. 

(a)

(b)

(c)

Figure 10. Simulation results of x, y and z variables 
obtained using PI control method
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(a)

(b)

(c)

Figure 11. The x, y and z state variable errors 
obtained using PI control method 

(a)

(b)

(c)

Figure 12. Simulation results of the x, y and z 
variables obtained using adaptive control method

(a)

   

(b)

   

 (c)

Figure 13. The x, y and z state variable errors 
obtained using adaptive control method 

The error indice results (Eker, 2012) showing 
the performances of the controllers are given in 
Table 2. The controller was activated in 5 seconds, 
after then the performance values were obtained 
in following 18 seconds. In Table 2, sliding mode 
control method has been better accomplished 
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than PI and adaptive control (AdC) methods as 
the performance index values show.

Table 2. Performance indices of the controllers

IAE ISE ITEA ISCI

SMC
x 0.0497 0.0025 0.0224 160.5

z 0.0128 0.0002 0.0058 22.01
z 0.0128 0.0002 0.0006 90.24

PI
x 0.4076 0.2205 0.2329 440.3
y 0.0911 0.0101 0.0432 28.78
z 0.2166 0.0660 0.1088 170.8

AdC
x 0.3783 0.1870 0.1732 160.5
y 3.1530 9.9400 1.5700 165.1
z 0.3999 0.1791 0.2284 1488

The slave state variables can reach the master state 
variables when the controller activates the system 
at 5th second as illustrated in Fig.  7, 8, 9, 10, 11, 
12 and 13. By using SMC, state variables reached 
master system behaviour very quickly, whereas 
using PI and adaptive controls they reached it very 
slowly. Moreover, when the synchronization errors 
performance index values of the BLDC motor 
in Table 2 are examined, sliding mode control 
response obtains a perfect synchronization in 
comparison with PI and adaptive control methods. 

7. Conclusion

In this study, three different chaos-based control 
methods for the brushless DC motor control were 
proposed. According to the simulation results, 
Sliding Mode Control showed an effective 
performance compared with the PI and adaptive 
controller methods. The results obtained for 
the three control methods showed that the 
synchronization method can be used as a good 
control technique. However, the steady state error 
values of the adaptive control method were found 
to be quite high compared to those obtained by 
PI and SMC methods. Even a very small change 
in the initial conditions of chaotic systems 
has lead to significant changes in the dynamic 
behavior of chaotic systems. According to the 
resulting x, y and z state variable errors, using 
SMC based synchronization method, steady-state 
error, overshoot and settling time have achieved 
minimum values. It appears that the results 
obtained from this study could be beneficial 
in controlling brushless DC motor for electric 
vehicles and provide different perspectives as this 
was previously mentioned in studies conducted 
by Hou (2017) and Rajagopal et al. (2017). The 
methods which were improved in this study 
provide a novel approach for chaos-based control 
of BLDC Motors.
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