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Abstract: The aim of this paper is to obtain the real quadratic fields Q
(√

d
)

including

ωd =

a0; ; γ, γ, . . . , γ︸      ︷︷      ︸
l−1

, al


where l = l (d) is the period length and γ is a positive odd integer. Moreover, we have considered a new
perspective to determine the fundamental units εd and got important results on Yokoi’s invariants nd and
md [since they satisfy necessary and sufficient conditions related to Ankeny-Artin-Chowla conjecture
(A.A.C.C), give bounds for fundamental units and so on...] for such types of fields.
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1. Introduction

Zhang and Yue [33], established some congruence relations on the coefficients of the fundamental
units for the real quadratic fields Q(

√
d) while class number is odd. Similarly [28], Williams and

Buck compared the lengths of the continued fraction expansions of
√

d and 1
2

(
1 +
√

d
)

and worked
on Eisenstein’s problem. Tomita and Yamamuro [27] obtained new sharpener lower bound for εd

and determined continued fraction expansion of integral basis element using the Fibonacci integer
sequence. Tomita also described explicitly εd by determining the continued fraction expansion of ωd

where the period length is equal to 3 in the reference [26]. Chakraborty et al. proved a new alternative
class number formula for real quadratic fields with discriminant 4 ≡ 5(mod8) [4]. In the reference [9],
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the author Jeangho investigated a real quadratic integer ξ with fixed norm in the real quadratic field
of Q (ξ) and proved real equation’s solvability as well as the quadratic progressions for fundamental
units. He also demonstrated that prime ideals lying over fixed norm are principal by considering fixed
norm equals to −1 or prime.

In recent years, Benamar and co-authors gave the lower bound of the number of special
polynomials with a stable period continued fraction expansion in the reference [3]. Badziahin and
Shallit [2] considered the some real transcendental numbers σ with the explicit type of continued
fraction expansions. Tomita and Kawamoto [10] showed a relation between the real quadratic fields
of class number one and a mysterious behavior of the simple continued fraction expansion of certain
quadratic irrationals. Besides, some authors expressed important results for several kinds of continued
fractions and the real quadratic number fields in their papers. So, one may
consider [1, 5–8, 12–14, 23–25] references for getting more information about the continued fraction
expansions and the fundamental units.

The authors Kim and Ryu [11] worked on the special class circular units εk of Q
(√

pq
)

and
investigated unit group of such real quadratic field. They also proved class number of quartic fields
Q

(√
−p,
√
−q

)
by using Sinnott’s index formula. In generally, papers include specifying a very short

period length but McLaughlin [13] took the very reasonable step of restricting to the case where the
period need not be short, but with the constraint that all. By the way, Sasaki [24] and Mollin [14]
studied bounds of εd for real quadratic fields Q

(√
d
)

and obtained useful significant results for that.
Yokoi defined several invariants to solve class number problems and solutions of the Diophantine
equations in the terms of coefficients of fundamental unit in the references [29–32]. Furthermore, the
author of this paper proved some special and significant results in the references [15–22].

This paper determines the fundamental unit problem. The following has been identified; Continued
fraction expansions have individual elements equal to each other’s and also written as γs (except the
last digit of the period) for a γ positive odd integer where d is square free integer and equivalent to 1 for
modulo 4. We also state the fact that, infinitely countable values have been classified and generalized
as of d having all γs in the symmetric part of period length of ωd. By using our newly identified

results, we have concluded that the general forms of the following structures are found out for such
real quadratic number fields;

(1) Radicand d
(2) Fundamental units εd

(3) Coefficients of fundamental unit td, ud

(4) Yokoi’s invariants nd,md

Also, additional results on fundamental units, Yokoi’s invariants, continued fraction expansions
and period lengths are empirically revealed and validated with this paper as well as related published
papers.

2. Preliminaries

In this part, we give some basic and useful informations. Throughout this paper, we fix some
notations and provide them as follows:
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Let k = Q(
√

d) be a real quadratic number field for d > 1 square-free integer, the integral basis
element ωd is a part of Z[ωd] and l(d) is the period length of continued fraction expansion of εd, the
fundamental unit εd of real quadratic number field is denoted by
εd =

td+ud
√

d
2 > 1 such that N(εd) = (−1)l(d) in this paper.

Note: The set I(d) contains all quadratic irrational numbers in k = Q(
√

d). α in I(d) is defined as
reduced if α > 1, 1 < α′ < 0 (α′ is the conjugate of α with respect to Q). Also, R(d) is the set of all
reduced quadratic irrational numbers in I(d). Besides, it is well known that any number α in R(d) has
purely periodic continued fraction expansion and the denominator of its modular automorphism is
equal to fundamental unit εd of k = Q(

√
d). Yokoi’s invariants defined by H. Yokoi are determined by

the coefficients of the fundamental unit εd =
td+ ud

√
d

2 as md = b
u2

d
td
c and nd = b

td
u2

d
c where bxc represents

the floor of x.

Definition 2.1. Let’s fix a positive odd integer γ and define {ci} sequence with the recurrence relation

ci = γci−1 + ci−2

for i ≥ 2 with the seed values c0 = 0 and c1 = 1.

Remark 2.1. If {ci} sequence is defined as Definition 2.1, then we state the following congruence for
γ ≡ 1(mod4):

cn ≡


0 (mod4) , n ≡ 0 (mod6) ;
1 (mod4) , n ≡ 1, 2, 5 (mod6) ;
2 (mod4) , n ≡ 3 (mod6) ;
3 (mod4) , n ≡ 4 (mod6) .

and also, for γ ≡ 3 (mod4):

cn ≡


0 (mod4) , n ≡ 0 (mod6) ;
1 (mod4) , n ≡ 1, 4, 5 (mod6) ;
3 (mod4) , n ≡ 2 (mod6) ;
2 (mod4) , n ≡ 3 (mod6) .

is satisfied where n ≥ 0.

Lemma 2.1. Let d be a square-free positive integer. If we put ωd = σ−1+
√

d
σ

, a0 = bωdc into the ωR,
then we get ωd < R(d) but ωR ∈ R(d). Also, let ωR = PlωR+Pl−1

QlωR+Ql−1
be an image of the ωR under the

particular automorphism, then the fundamental unit εd of Q(
√

d) is determined as follows:

(i) If d is congruent to 1 modulo 4, then σ = 2 with

εd =
td + ud

√
d

2
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and
td = (2a0 − 1) .Ql(d) + 2Ql(d)−1, ud = Ql(d)

(ii) If d is congruent to 2 or 3 modulo 4 then σ = 1 as well as

εd =
td + ud

√
d

2
= ωR.Ql(d) + Ql(d)−1 > 1,

and
td = 2a0Ql(d) + 2Ql(d)−1, ud = 2Ql(d)

Since the denominator of the particular automorphism is the fundamental unit of Q(
√

d) with
norm (−1)l(d) where Qi is determined by Q0 = 0, Q1 = 1 and Q(i+1) = aiQi + Qi−1, (i ≥ 1).

Proof: (i) Proof of the part in Lemma 2.1. was demonstrated in the reference [26, Lemma 1, pp 41].
(ii) It is trivial that second part of Lemma 2.1 can be proven with the consideration of proof (i).

3. Main theorems and results

Our theorems and results are given as follows:

Theorem 3.1. Let d be square-free positive integer and l > 1 be a positive integer.

(1) We suppose
d = (2tcl + γ)2 + 8tcl−1 + 4

for t > 0 positive integer. In this case, we obtain that d ≡ 1(mod4) and

ωd =

tcl +
γ + 1

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, 2tcl + γ


and l = l(d). Moreover, we obtain

td = 2tcl
2 + γcl + 2cl−1, ud = cl

for εd =
td+ud

√
d

2 . Conversely, d ≡ 1(mod4) is written in the terms of {ci} sequence, γ and t if

ωd =

tcl +
γ + 1

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, 2tcl + γ


holds.

(2) Let l be divisible by 3. if we suppose

d = (tcl + γ)2 + 4tcl−1 + 4

for t > 0 positive odd integer, then we have d ≡ 1(mod4) and

ωd =

 t
2

cl +
γ + 1

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, tcl + γ


AIMS Mathematics Volume 5, Issue 4, 2899–2908.
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with l = l(d). Furthermore, in this case

td = tcl
2 + γcl + 2cl−1, ud = cl

hold for εd =
td+ud

√
d

2 . On the contrary, d ≡ 1(mod4) is defined in the terms of {ci} sequence, γ and
t if ωd is determined as above;

ωd =

 t
2

cl +
γ + 1

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, tcl + γ

 .
Proof: (1) Let the parameterization of d be d = (2tcl + γ)2 + 8tcl−1 + 4. Since γ is positive odd integer
(2tcl + γ)2 is positive odd integer. So, we get d ≡ 1(mod4). From (i) in Lemma 2.1, we know that
ωd = 1+

√
d

2 , a0 = bωdc and ωR = a0 − 1 + ωd. By using these equations, we obtain

ωR =
(2tcl + γ − 1)

2
+

tcl +
γ + 1

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, 2tcl + γ


so, we get

ωR = (2tcl + γ) +
1
γ + · · ·+

1
ωR

By a straightforward induction argument, we obtain

ωR
2 − (2tcl + γ)ωR − (1 + 2tcl−1) = 0.

This requires that ωR =
(2tcl+γ)+

√
d

2 since ωR > 0. If we consider again (i) in Lemma 2.1, we get

ωR =

tcl +
γ + 1

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, 2tcl + γ


and l = l (d) .

Now, we have to determine εd, td and ud by using (i) in Lemma 2.1. So, we get

Q1 = 1 = c1 ,Q2 = a1Q1 + Q0 ⇒ Q2 = γ = c2 ,

Q3 = a2 .Q2 + Q1 = γ.c2 + c1 = γ2 + 1 = c3 ,Q4 = c4, . . .

So, this implies that Qi = ci using induction for ∀i ≥ 0. If we substitute these values of sequence
into the εd =

td+ud
√

d
2 = (ωR) .Ql(d) + Ql(d)−1 > 1 and rearrange, we have td and ud as follows:

td = 2tcl
2 + γcl + 2cl−1, ud = cl

using (i) in Lemma 2.1 for εd =
td+ud

√
d

2 .

Conversely, assume that d ≡ 1 (mod4) , ωd =

tcl +
γ+1

2 ; γ, γ, . . . , γ︸      ︷︷      ︸
l−1

, 2tcl + γ

 holds.
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Since ωd = 1+
√

d
2 and (i) in Lemma 2.1, we obtain d = (2tcl + γ)2 + 8tcl−1 + 4 which completes the

proof of (1).

(2) If we assume that l ≡ 0(mod3) and the parametrization of d is given as follows:

d = (tcl + γ)2 + 4tcl−1 + 4

for t > 0 positive odd integer, then we have d ≡ 1 (mod4) since cl is even integer. By substituting t
2

instead of t into the case (1), we get

ωd =

 t
2

cl +
γ + 1

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, tcl + γ


and l = l(d). Furthermore,

td = tcl
2 + γcl + 2cl−1, ud = cl

hold for εd =
td+ud

√
d

2 .
On the other hand, d = (tcl + γ)2 + 4tcl−1 + 4 is obtained by putting t

2 instead of t into the case (1).
So, the proof of (2) is also completed.

Corollary 3.1. Assume that d ≡ 1 (mod4). If d satisfies the conditions in Theorem 3.1, then Yokoi’s
invariant nd is nonzero (and hence md = 0).

Proof: In the case of (1) in Theorem 3.1,

nd =

⌊
td

ud
2

⌋
=

⌊
2tcl

2 + γ.cl + 2cl−1

cl
2

⌋
= 2t +

⌊
γ.cl + 2cl−1

cl
2

⌋
Since t > 0 is positive integer and {ci} is increasing sequence, we get nd , 0 for l > 1. In a similar

way, for the case of (2) in the Theorem 3.1, we obtain

nd =

⌊
td

ud
2

⌋
= t +

⌊
γcl + 2cl−1

cl
2

⌋
we have nd , 0 since t > 0 and td > ud

2.

Remark 3.1.
(i) Let d be a square free positive integer concerning the case of (1) in the Theorem 3.1. As a result of
the theorem, εd, ωd and nd − md also have been calculated for γ = 1, 3, 5,7,9 and t = 1, 2 with some
values of 2 ≤ l(d) in the published papers.
(ii) Let d be the square free positive integer concerning the case of (2) in the Theorem 3.1. As a result
of the theorem, εd, ωd and nd − md also have been calculated for γ = 1, 3, 5 and t = 1, 3 with
3 ≤ l(d) ≤ 12.

AIMS Mathematics Volume 5, Issue 4, 2899–2908.
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Proof: Readers can see all numerical results with tables in the references [15–22].

Remark 3.2. It is easily seen that the present paper has got the most general theorems for such types
of real quadratic number fields since d is written by countable infinite integers t > 0 and γ > 0 (but γ
is odd) as well as in the terms of increasing integer sequence {ci}.

Theorem 3.2. Let d be the square free positive integer and l > 1 be a positive integer not divisible by
3. We assume that parameterization of d is

d =
(γ + (2t + 1)cl)

2

4
+ (2t + 1)cl−1 + 1

for t > 0 positive integer. Assume that γ ≡ 1(mod4) is any positive odd integer, then we have the
followings:

(1) If l ≡ 1(mod6) and t ≡ 0(mod2) are positive integers, then d ≡ 2(mod4) holds.
(2) If l ≡ 2(mod6) and t ≡ 0(mod2) are positive integers, then d ≡ 3(mod4) holds.
(3) If l ≡ 4(mod6) and t ≡ 0(mod2) are positive integers, then d ≡ 3(mod4) holds.
(4) If l ≡ 5(mod6) and t ≡ 1(mod2) are positive integers, then d ≡ 2(mod4) holds.

Also, suppose that γ ≡ 3(mod4) is any positive odd integer, then we have the followings:

(1*) If l ≡ 1(mod6) and t ≡ 1(mod2) are positive integers then d ≡ 2(mod4) holds.
(2*) If l ≡ 2(mod6) and t ≡ 0(mod2) are positive integers then d ≡ 3(mod4) holds.
(3*) If l ≡ 4(mod6) and t ≡ 0(mod2) are positive integers then d ≡ 3(mod4) holds.
(4*) If l ≡ 5(mod6) and t ≡ 0(mod2) are positive integers then d ≡ 2(mod4) holds.

Then, we obtain

ωd =

 (2t + 1) cl + γ

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, (2t+1)cl + γ


and l = l(d). Moreover, we have the following equalities:

εd =

(
(2t + 1)cl

2

2
+
γcl

2
+ cl−1

)
+ cl

√
d

td = (2t+1)cl
2 + γcl + 2cl−1, ud = 2cl,

for εd, td and ud. Conversely is also true.

Proof: It is clear that d is not integral while l ≡ 0(mod3) considering Remark 2.1. So, we assume that
d is not divisible by 3 in order to get integer d. We first assume that l ≡ 1(mod4) positive odd integer,
l ≡ 1(mod6), l > 1 and t ≡ 0(mod2) positive integer. So, we get d ≡ 2(mod4) by substituting the
equivalent results into the parameterization of d. We obtain the other cases in a similar way.

By using (ii) in Lemma 2.1, we have

ωR =
(2t + 1) cl + γ

2
+

 (2t + 1) cl + γ

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, (2t+1)cl + γ

 ,
AIMS Mathematics Volume 5, Issue 4, 2899–2908.
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So, we get

ωR =
(
(2t+1)cl + γ

)
+

1
γ + · · ·+

1
ωR

By a straightforward induction algorithm, we get

ωR = ((2t + 1) cl + γ) +
cl−1ωR + cl−2

clωR + cl−1

By rearranging the Definition 2.1 into above equality, we obtain

ωR
2 − ((2t + 1)cl + γ)ωR − (1 + (2t + 1)cl−1) = 0

This requires that ωR =
(2t+1)cl

2 +
√

d since ωR > 0. If we consider (ii) in Lemma 2.1, we get

ωd =
√

d =

 (2t + 1) cl + γ

2
; γ, γ, . . . , γ︸      ︷︷      ︸

l−1

, (2t+1)cl + γ


and l = l (d) . This shows that the part of continued fraction expansions is completed.

Now, we should determine εd, td and ud by using (ii) in Lemma 2.1. Thereby, we have

Q1 = 1 = c1 ,Q2 = a1Q1 + Q0 ⇒ Q2 = γ = c2,

Q3 = a2 .Q2 + Q1 = γc2 + c1 = γ2 + 1 = c3,Q4 = c4, . . .

So, this implies that Qi = ci by using mathematical induction for ∀i ≥ 0. If we substitute these
values of sequence into the εd =

td+ud
√

d
2 = (ωR) .Ql(d) + Ql(d)−1 > 1 and rearranged, we have td and ud

using (ii) in Lemma 2.1 as follows:

εd =

(
(2t + 1)cl

2

2
+
γcl

2
+ cl−1

)
+ cl

√
d

td = (2t + 1)cl
2 + γcl + 2cl−1, ud = 2cl,

for εd, td and ud which complete the proof of Theorem 3.2. Conversely, it is also true and trivial that if
we consider (ii) in Lemma 2.1 and the definition of ωd =

√
d.

Remark 3.3. Let d be the square free positive integer concerning Theorem 3.2. As a result of the
theorem ωd, εd and nd − md also have been calculated for γ = 1, 3, 5, 7 and t = 0, 1, 2, 3 with some
values of 2 ≤ l(d).
Proof: Readers can see all numerical results with tables in the references [15–22].
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