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Coronavirus is an epidemic that spreads very quickly. For this reason, it has very devastating effects in
many areas worldwide. It is vital to detect COVID-19 diseases as quickly as possible to restrain the spread
of the disease. The similarity of COVID-19 disease with other lung infections makes the diagnosis difficult.
In addition, the high spreading rate of COVID-19 increased the need for a fast system for the diagnosis
of cases. For this purpose, interest in various computer-aided (such as CNN, DNN, etc.) deep learning
models has been increased. In these models, mostly radiology images are applied to determine the pos-
itive cases. Recent studies show that, radiological images contain important information in the detection
of coronavirus. In this study, a novel artificial neural network, Convolutional CapsNet for the detection
of COVID-19 disease is proposed by using chest X-ray images with capsule networks. The proposed ap-
proach is designed to provide fast and accurate diagnostics for COVID-19 diseases with binary classifica-
tion (COVID-19, and No-Findings), and multi-class classification (COVID-19, and No-Findings, and Pneu-
monia). The proposed method achieved an accuracy of 97.24%, and 84.22% for binary class, and multi-
class, respectively. It is thought that the proposed method may help physicians to diagnose COVID-19
disease and increase the diagnostic performance. In addition, we believe that the proposed method may
be an alternative method to diagnose COVID-19 by providing fast screening.
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1. Introduction

The COVID-19 disease caused by the SARS-CoV-2 virus first ap-
peared in Wuhan, China. COVID-19 affects the respiratory system,
causing fever and cough, and in some serious cases, causes pneu-
monia [1]. Pneumonia is a type of infection that causes inflamma-
tion in the lungs, and besides the SARS-CoV-2 virus, bacteria, fungi,
and other viruses often play a role in the emergence of this dis-
ease [2]. Conditions such as weak immune system, asthma, chronic
diseases and elderliness increase the severity of pneumonia. Treat-
ment of pneumonia varies depending on the organism causing
the infection, but usually antibiotics, cough medicines, antipyret-
ics, and pain killers are effective for treatment [3]|. Depending on
the symptoms, patients can be hospitalized and, in more severe
cases, they can be taken to the intensive care unit. The COVID-19
outbreak is considered a serious disease due to its high permeabil-
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ity, and contagiousness [4]. In addition, this epidemic has a great
impact on the healthcare system, by virtue of the high number of
patients hospitalized in intensive care units, the length of treat-
ment, and the lack of hospital resources [5,6]. Thus, it is vital to
diagnose the diseased at an early stage in order to prevent such
scenarios.

Computed tomography, and X-ray images play an important
role in the early diagnosis and treatment of COVID-19 disease [7].
The fact that X-ray images are cheaper and faster, and patients are
exposed to less radiation cause these images to preferred more
than CT images [8,9]. However, it is not easy to diagnose pneumo-
nia manually. White spots on X-ray images need to be examined
and interpreted in detail by a specialist. Yet, these with spots can
be confused with tuberculosis or bronchitis, which can lead to mis-
diagnosis. In Fig. 1, we provide a chest X-ray images of a COVID-19
patient taken on days 1, 4, 5, and 7.

Manual examination of X-ray images provides accurate diagno-
sis of the disease in 60-70% [11,12]. Additionally, 50-75% perfor-
mance is achieved by manual analysis of CT images [11]. Therefore,
artificial intelligence based solutions may provide a less costly and
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Fig. 1. Chest X-ray image of COVID-19 patient [10].

accurate diagnosis for both COVID-19 and other types of pneumo-
nia. Deep learning models, one of the artificial intelligence tech-
niques, are used successfully in the biomedical field. Diagnosis
of cardiac arrhythmia [13,14], brain injuries [15,16], lung segmen-
tation [17,18], breast cancer [19,20], skin cancer [21,22], epilepsy
[23,40,72], and pneumonia [24-29] with deep learning models has
increased the popularity of these algorithms in biomedical field.
Radiology images have been widely used recently for the di-
agnosis of COVID-19. Apostolopoulos et al. [30] developed a deep
learning-based method for the diagnosis of COVID-19. In the study,
both binary class and multi-class analysis process took place. A to-
tal of 224 COVID-19, 700 bacterial pneumonia, and 500 no-findings
X-ray images were used. The performance of the developed model
was measured with accuracy, sensitivity, and specificity values. The
proposed model achieved an accuracy rate of 98.78% for the binary
class (COVID-19 vs. No-findings), and 93.48% for the multi class
(COVID-19 vs. No-findings vs. pneumonia). Similarly, Hemdan et al.
[31] proposed a deep learning model for the diagnosis of COVID-
19 disease, and compared the model with 7 different deep learn-
ing algorithms. The success of the proposed method has been de-
termined with accuracy, precision, recall, and f1-score values. An
average of 74.29% accuracy was obtained for binary class problem.
Narin et al. [32] performed COVID-19 diagnosis using chest X-ray
images by developing the ResNet50, InceptionV3, and Inception-
ResNetv2 deep learning models. In the study, the binary classifi-
cation process was carried out, and the data were validated with
5 fold cross-validation. The performance of the models was eval-
uated with five different criteria, and an average of 98% accuracy
was achieved with the ResNet50 model. Wang et al. [33] provided
a deep learning model to diagnose COVID-19 disease. The perfor-
mance of the proposed method was evaluated with sensitivity and
accuracy metrics, and the results were compared with VGG19 and
ResNet50 deep learning models. At the end of the study, average
accuracy was achieved as 93.3%. Sethy et al. [34] extracted features

from COVID-19’s X-ray images using the deep learning model and
classified these features with SVM. The performance of this hybrid
model, which was created by combining ResNet50 and SVM mod-
els, was measured with fl-scores and Kappa values. It was em-
phasized in the study that this method, which is compared with
other methods, is more effective. Afshar et al. [35] used capsule
networks to diagnose COVID-19 cases. The success of the proposed
model was evaluated with specificity, sensitivity, and accuracy val-
ues and 98.3% accuracy was achieved. Mobiny et al. [36] developed
capsule networks to diagnose COVID-19 cases with X-ray images.
The developed model was compared with Inceptionv3, ResNet50,
and DenseNet121 deep learning models and the proposed method
has been more successful.

In addition to X-ray images, there are COVID-19 diagnostic stud-
ies performed with computed tomography. Zheng et al. [37] de-
veloped a novel deep learning model and proposed model was
tested with 499 CT images. At the end of the study, an average
of 88.55% accuracy was achieved. In the study by Ying et al. [38],
CT images were used to diagnose COVID-19 disease and distinguish
the pneumonia. The proposed deep learning model was compared
with some models in the literature and the performance of the
model was determined with accuracy, precision, recall, AUC, and
f1-scores.

Nowadays, with the prominence of deep learning models, huge
data sets can be evaluated much more comfortably. As in many
fields, the most preferred deep learning model in medicine is CNN-
based models. Yet, CNN architectures have some limitations. One
of these constrains is the max pooling. Max pooling is designed to
transfer the most valuable information from the previous layer to
the next layer. This causes small details in the data to be lost, and
the data may not be transferred to other layers. Also, existing CNN
models cannot maintain the part-whole relationship of the objects.
In order to overcome these shortcomings of CNNs, Sabour et al.
[39] proposed a new neural network called Capsule Networks in
2017. They suggest that with this proposed model, they overcome
the shortcomings of existing CNN models. There are several studies
on capsule networks and X-ray images. While CT images were used
in the study of Mobiny et al. [36], in the study of Afshar et al. [35],
X-ray images and 5 different thorax data sets were examined. The
number of COVID-19 cases used in the study was not specified.

In our study, 231 COVID-19 images were examined. In addi-
tion, unlike other articles, a new network architecture was pro-
posed in our study. In the study, binary class (COVID-19, and No-
findings) and multi-class (COVID-19, and No-findings and Pneumo-
nia) classification was carried out with capsule networks. COVID-
19 and other images of different sizes have been resized to be in-
put data to capsule networks. In the study, a novel model is pro-
posed, which is different from the existing capsule networks. The
flowchart of the study is shown in Fig. 2.

The rest of the study is organized as follows. In the Materials
and Method section, data set and capsule network architecture are
mentioned. In the Experimental Results section, the findings are
discussed. In the Conclusion, general contributions of the study are
presented.

2. Materials and method
2.1. The dataset

In this study, X-ray images of COVID-19 [41], and no-findings
and pneumonia [42] were used. The database generated by Cohen
[41] is constantly updated with images of COVID-19 patients from
different parts of the world. During this study, 231 COVID-19 im-
ages were used. There is no detailed record of patient information
in the database. In the database provided by Wang et al. [42], 1050
no-findings, and 1050 pneumonia images were used.
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Fig. 2. Flowchart of the proposed method.

2.2. Capsule networks

Capsule networks have been developed to maintain the posi-
tions of objects and their properties in the image, and to model
their hierarchical relationships [39]. In the convolution neural net-
works, valuable information in the data comes to the fore with
the pooling layer. Since the data is transmitted to the next layer
by pooling, it may not possible for the network to learn small
details [43]. In addition, CNN produces a scalar value in neural
output. Capsule networks create vectorial output of the same size
but with different routings, thanks to the capsules, which contain
many neurons. The routings of a vector represent the parameters
of the images [44]. CNNs use scalar input activation functions such
as RelU, Sigmoid, and Tangent. On the other hand, capsule net-
works use a vectorial activation function called squashing given in
Eq. (1);

_ Isill” s,
2
1+ [s|[F 1185l

In the Eq. (1), v; indicates the output of the capsule j, and s;
indicates the total input of the capsule. v; shrinks long vectors to-
wards 1 if there is an object in the image, and chokes short vectors
towards O if there is no object in the image [45,46].

Except for the first layer of capsule networks, the total input
value of capsule s; is found by weighted sum of the prediction vec-
tors (Uy;) in the capsules located in the lower layers. The predic-
tion vector (Ujy;) is calculated by multiplying a capsule in the lower
layer by its output (0;), and a weight matrix (Wj).

Si= 2 bijuji 2)

(1)

J

u;j;-W;;0; (3)

where bj; is the coefficient determined by the dynamic routing pro-
cess and is calculated as in Eq. (4);

exp(a;))

I S @

In the Eq. (4), a; donates the log probability. The sum of the
correlation coefficients between capsule i, and capsules in the top
layer is 1 and the log prior probability is determined by Softmax
[47]. In capsule networks, a margin loss has been proposed to de-
termine whether objects of a particular class are present and can
be calculated with the Eq. (5);

2 2
Ly = Tymax (0, m* — [|[vll)” + A(1 = T) max(0, ||ve|| —m")
(5)

The value of T, is 1 if and only if the class k is present. m
* = 0.9 ve m™ = 0.1 are the hyper parameters and denotes down-
weighting of the loss [47]. The length of the vectors calculated in
the capsule networks indicates the probability of being in that part
of the image, while the direction of the vector contains the param-
eter information such as texture, color, position, size, etc. [46,48]

2.2.1. Capsule network architecture

Original capsule networks were used to classify 28 x 28 size
MNIST images. The network has one convolution layer, one pri-
mary layer, one-digit layer, and three fully connected layers. Con-
volution layers contains 256 kernels of size 9 x 9. This layer con-
verts pixel densities to local features with the size of 20 x 20
to be used as inputs to primary capsules [49]. Second layer (Pri-
mary Caps) contains 32 different capsules and each capsule applied
eighth 9 x 9 x 256 convolutional kernels. Both layers used the
RelLU activation function. The last layer (Digit Caps) outputs 16D
vectors that contain all the instantiation parameters required for
reconstruction the object [39,49].

2.2.2. The proposed network architecture

For the classification of 128 x 128 images, we propose a new
network model with five convolution layers. The reason for adding
more convolution layers is to provide more effective feature map to
the primary layer as an input. Fig. 3 shows the proposed network
architecture. In Fig. 4, the details of the original capsule network
and the proposed network architecture are given. First layer con-
tains 16 kernels of size 5 x 5 with a stride of 1. Max-pooling with
size and stride of 2 was applied to the first layer exit. The same
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Fig. 3. The Convolutional CapsNet architecture for classification of COVID-19, and No-findings images.
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Filter Kernel size Stride Output
Input 28,28
Convl 256 9x9 1 20, 20
Primary capsule 32x8 9x9 2 32,8,6.,6
Digit capsule - - - 16, 10
Output - - - 10
B
Filter Kernel size Stride Output
Input 128, 128,1
Convl 16 5x5 1 128, 128, 16
Maxpooling - 2x2 2 64, 64, 16
Conv2 32 5x5 1 64, 64, 32
Maxpooling - 2x2 2 32,32,32
Conv3 64 5x5 1 32,32, 64
Maxpooling - 2x2 2 16, 16, 64
Conv4 128 9x9 1 16, 16, 128
Primary capsule 256 9x9 1 16, 16, 256
Label capsule - - - 16, 2
Output - - - 2
\\ J

Fig. 4. A- Original capsule network architecture, B- the proposed Convolutional CapsNet architecture.

structure was used in the next two layers. The kernel numbers
of the second and third layers are 32 and 64, respectively. Fourth
layer includes 128 kernels of size 9 x 9 with a stride of 1. The fifth
layer is the primary layer and it contains 32 different capsules and
each capsule applied 9 x 9 convolutional kernels with a stride of
1. The LabelCaps layer has 16-dimensional (16D) capsules for two
classes and three classes, and ReLU activation function is used for
all layers.

2.2.2.1. Preprocessing and data augmentation. The input size for the
proposed model is 128 x 128. Yet, since the lengths and widths of
the images in the data set are not the same size, all images were
resized to 128 x 128 pixels. Since the number of COVID-19 X-ray
images is limited, data augmentation strategies have been applied
to avoid overfitting problems. For data augmentation, width shift
range (0.2), height shift range (0.2), and flip horizontal parameters
were considered. As a result, COVID-19 X-ray images have neem
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Fig. 6. The graphical representation of training and test data.

increased from 231 to 1050. Fig. 5 shows an example of data aug-
mentations applied to COVID-19 images.

2.3. Performance evaluation

The performance of the proposed method was evaluated with
10 fold cross-validation. The data set was divided into 10 parts and
9 parts were used for training, while the remaining one was used
for testing (Fig. 6). This process was carried out for all parts and
the performance of the method was calculated by taking the aver-
age of all parts.

The used parameters to compare performances are defined as
follows;

o True Positive (TP) shows the number of correctly identified
COVID-19,

o False negative (FN) indicates the number of incorrectly identi-
fied COVID-19,

e True negative (TN) is the number of correctly identified No-
findings,

o False positive (FP) is the number of incorrectly identified No-
findings.

Sen = TP/(TP + FN) x 100 (6)

Spe = TN/(TN + FP) x 100 (7)

Pre = TP/(TP + FP) (8)
F1=2TP/(2TP + FP + FN) (9)
Acc = (TP+TN)/(TP+FP + TN + FN) x 100 (10)

3. Experimental results and discussion

Since the data sets consist of images from different sources, all
images were first resized to 128 x 128 pixels. The resolution of
images is high and it is required a powerful system to analyze the
images with the original size by using capsule networks. It is time
consuming and costly to process the high quality images like in all
classical deep learning architectures. For this reason, images have
been resized to 128 x 128 pixels.

Two different scenarios were used for COVID-19 detection from
X-ray images. In the first scenario, a binary class model (COVID-
19 vs. No-findings) was performed. In the second scenario, a multi
class model (COVID-19 vs. No-findings vs. Pneumonia) was pro-
posed. During the training phase, the performance of method was
evaluated with 10 fold cross-validation with the number of 50
epochs. The first scenario includes three different applications. In
the first application, a training was conducted using 231 COVID-19
and 500 No-findings images. In the second application, data aug-
mentation was applied. In the last application, the original capsule
network architecture was used. The training and loss graph for a
fold of the first application is shown in Fig. 7.

In the second application, 231 COVID-19 images were increased
to 1050 with data augmentation process. 1050 No-findings images
were also obtained from [41] for the second application. In the
third application, 1050 COVID-19, and 1050 No-findings were used.
Fig. 8 shows the training and loss graphs for a fold of the second
application. In addition, the classification results obtained before
and after data augmentation are given in Table 1.

As can be seen in Table 1, performance parameters have
increased significantly with data augmentation. Although it is
claimed that capsule networks have high performance with low
data set, increasing the training data set is a parameter that sig-
nificantly affects classification performance [50,51]. According to
Table 1, the original capsule network architecture is not sufficient
for classifying X-ray images. In addition, the results showed that
the original architecture was very poor and a lot of processing
time was required for each epoch. Therefore, as shown in Fig. 3,
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Table 1
The classification results before and after data augmentation (A: the proposed Convolutional CapsNet method, B: original capsule
network).
Processing time Number of data
Model  Data Aug. Sen (%) Spe (%) Pre (%) F1(%) Acc (%) (per epoch) (Covid19/No-findings)
A No 96.00 80.95 91.60 93.75 91.24 +£ 535 16 231/500
A Yes 97.42 97.04 97.06 97.24 97.24 + 0.97 72 1050/1050
B Yes 28.00 98.00 12.50 55.00 49.14 + 0.99 500 1050/1050
2 classes (without data augmentation) 3 classes (with data augmentation)
10 1.0
N f/ 0.8 1
>, 06 ——— (Capsnet Training 2 0.6 4 ——— Capsnet Training
S Capsnet Validation g - Capsnet Validation
5 - (Capsnet Loss g2 ~—— Capsnet Loss
E 04 —— Capsnet Validation Loss < 0.4 1 —— Capsnet Validation Loss
0.2 0.2 1
00 T T T T 0.0 T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Iterations

Fig. 7. Training and loss graphs for a fold (without data augmentation) of the first
application.

2 classes (with data augmentation)
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0.8 A
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8 —— Capsnet Validation
=
8 ——— Capsnet Loss
<‘:’ 0.4 4 —— Capsnet Validation Loss
0.2 4
0.0 T T T ==
0 10 20 30 40 50

Iterations

Fig. 8. Training and loss graphs for a fold (with data augmentation) of the second
application.

a new network model is proposed in which the number of convo-
lution layers is increased. With the proposed method, an accuracy
of 91.24% was achieved without applying data augmentation. Then,
data augmentation was applied, and the data set was restructured
to be 1050. With the restructured data set, the accuracy rate of
the training result increased by 6%, and the performance reached
97.24%. Table 2 shows the detailed results of all folds obtained by
applying data augmentation.

In the second scenario, multi class (COVID-19 vs. No-findings
vs. Pneumonia) X-ray images were classified using 10 fold cross-
validation. The results are given in Table 3. In addition, the training
and loss graphs of the multi class training process are shown in
Fig. 9.

Other hyper parameters of capsule networks are given in
Table 4. Three different r parameters (1,3,5) were considered to

Iterations

Fig. 9. Training and loss graphs for a fold (with data augmentation) for multi class
problem.

classify X-ray images. The best result was obtained with r = 5 in
binary classification, and r = 3 in multiclass classification.

Confusion matrix is used to measure the accuracy of the
model’s predictions. Confusion matrixes of binary class and multi
class classification results are given in Fig. 10. As seen in Fig. 10a,
the proposed method correctly classified 1019 of 1050 COVID-19
images in a binary class. In Fig. 10b, the proposed model accurately
identified 993 COVID-19 images in a multi class. While COVID-19
was determined with 97.04% accuracy in binary classification, this
ratio was 94.57% in multi class classification.

3.1. Decoder part

Capsule networks use the autoencoders structure to reconstruct
data. Autoencoders consist of encoder and decoder [43]. In the pro-
posed capsule network, the encoder consists of convolution layer,
primary layer, and label layer, while the decoder part includes of
three fully connected layers. The decoder tries to reconstruct the
X-ray image using the properties generated in the encoder. In do-
ing so, the encoder uses the difference of the mean square error
between the reconstructed and input image. The low error indi-
cates that the rebuilt image is similar to the input image [45,52].
Fig. 11 shows the decoder structure of the proposed model.

X-ray images encoded with the proposed capsule network, and
reconstructed with the decoder are provide in Figs. 12 and 13,
respectively. Two different weights are used for the reconstruc-
tion loss function in the decoder [53]. The first one is 0.392 (in
MNIST dataset (0.0005 x 28 x 28) in the original CapsNet archi-
tecture, and the second is 8.192 (0.0005 x 128 x 128) calculated
for 128 x 128 X-ray images.

In images reconstructed via decoder, blur is observed. This may
be due to changes in the data in the training set or CapsNet’s in-
ability to distinguish the noise in the image [45,53]. Also, when the
weight of reconstruction loss is increased from 0.392 to 8.192, it
is seen that the blurriness of the reconstructed images decreases,
and images gain a little more clarity. An important advantage of
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True label

Table 2
10 fold results with data augmentation.
Folds Sen (%) Spe (%) Pre (%) F1 (%) Acc (%)
Fold 1 96.19 99.04 99.01 97.58 97.61
Fold 2 99.04 97.14 97.19 98.11 98.09
Fold 3 99.04 94.28 94.54 96.74 96.66
Fold 4 98.09 95.23 95.37 96.71 96.66
Fold 5 96.19 97.14 97.11 96.65 96.66
Fold 6 98.09 98.09 98.09 98.09 98.09
Fold 7 100.0 98.09 98.13 99.05 99.04
Fold 8 97.14 98.09 98.07 97.60 97.61
Fold 9 93.33 98.09 98.00 95.61 95.71
Fold 10 97.14 95.23 95.32 96.22 96.19
Mean=+Std 97.42 + 1.81 97.04 + 1.50 97.08 + 01.42 97.24 + 0.98 97.23 + 0.97
Table 3
Multi class classification results.
Folds Sen (%) Spe (%) Pre (%) F1 (%) Acc (%) Overall Acc (%)
Fold 1 81.59 90.41 82.16 81.66 87.33 81.59
Fold 2 83.49 91.30 83.84 83.59 88.55 83.49
Fold 3 89.52 94.66 89.88 89.53 92.91 89.52
Fold 4 81.90 90.50 82.30 82.06 87.46 81.90
Fold 5 83.49 91.53 83.79 83.50 88.79 83.49
Fold 6 86.03 92.73 87.28 85.95 90.41 86.03
Fold 7 85.71 92.65 86.07 85.84 90.23 85.71
Fold 8 82.86 90.97 83.02 82.60 88.26 82.86
Fold 9 83.17 91.30 83.36 82.97 88.60 83.17
Fold 10 84.44 91.83 84.41 84.41 89.31 84.44
Mean=+Std 84.22+2.24 91.79+1.21 84.61+2.32 84.21+2.24 89.19+1.57 84.22+2.24
Accuracy:%97.24 Accuracy:%84.22
1000
Covid-19 32
800
Covid-19 800
600 3 E00
m A
u No-finding
400 = 400
No-Finding
200 Pneumonia 24 200
T
£ 2 ) R
B t,\“g .,5.5'\' ) (\b\o &
&t < A i &
& W o«
Predicted label Predicted label
Fig. 10. Confusion matrix of binary and multi class classification results.
FC Reconstructed image
Label Capsule

FC
y e < 0

16384
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Fig. 11. Decoder structure of the proposed model.
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Fig. 13. Reconstructed No-findings X-ray images. First line: original images, second line: reconstructed images (weight of reconstruction loss (w) = 0.392), third line: recon-
structed images (weight of reconstruction loss (w) = 8.192).
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Table 4
Hyper parameters of capsule networks.

Routing Optimizer Ir Loss weight Batch size  Epoch

1,35 Adam 0.00005 0.392 16 50
8.192

capsule networks is that they can reconstruct images. In this way,
it is not necessary to use methods such as heatmap [52,54-56] to
comprehend which part of image is effective in extracting features
in CNN models. Thanks to the reconstruction ability of capsule
networks, it is clearer which parts of the image are used for the
classification process. Classification was carried out using the pro-
posed method with the reconstructed chest X-ray images shown in
Figs. 12, and 13. These parts can be considered as the parts where
effective features are selected for the classification of the image.
It is known that COVID-19 is difficult to diagnose because it over-
laps with other lung infections [35]. Therefore, it is important to
distinguish COVID-19 from other lung infections while extracting
features from chest X-ray images. Although 128 pixels size images
were used in this study, the proposed model was able to discrim-
inate COVID-19, and No-findings with 97.24% accuracy, whereas
COVID-19, no-findings, and pneumonia images with 84.22% accu-
racy. We believe that, when much larges images are used, the pro-
posed model may reveal effective features that can distinguish dif-
ferent types of infections in the lung area.

After the coronavirus outbreak, many different computer-aided
studies are conducted to assist physicians for the diagnosis of
COVID-19. Most of these studies applied X-ray and CT images
to detect COVID-19 with artificial intelligence approaches. Apos-
tolopoulos et al. [30] developed a deep learning model for the
diagnosis of COVID-19. In the study, both binary class, and
multi class classification analysis took place. The proposed model
reached an accuracy of 98.75% for the binary class, and 93.48%
for the multi class. In study of Ozturk et al. [52], authors pro-
posed DarkCovidNet model to diagnose COVID-19 with X-ray im-
ages. They have achieved 98.08%, and 87.02% accuracies for binary
and multiclass classification, respectively. Togacar et al. [57] devel-
oped MobileNet, a deep learning-based model, for COVID-19 detec-
tion. They have reached 99.27% accuracy rate using 295 COVID-19,
98 pneumonias, and 65 no-findings X-ray images. The researches
also applied CT images to diagnose COVID-19. Ying et al. [38], pro-
vided VGG16, DenseNet, ResNet and DRE-Net to detect COVID-19
with 88 COVID-19 images, and 86 normal images. Wang et al. [33],

obtained a classification accuracy of 89.50% using the Inception-
Net deep learning model with CT images. ResNet18, and ResNet23
was considered to diagnose COVID-19 with CT images in the study
of Butt et al. [59]. 189 COVID-19, 194 pneumonias, and 145 no
findings CT images were used for 3 -class problem. At the end of
the study, researches reached 86.70% accuracy rate. Panvar et al.
[71] proposed a deep learning model, nCOVnet to determine the
COVID-19 disease using X-ray images. Binary class problem was
considered in the study, and the performance of the proposed
method was determined with an accuracy of 97.60%

In this study, a deep learning model based on capsule networks
was performed for the detection of COVID-19 disease. Totally 3150
(1050 COVID-19, 1050 Pneumonia, and 1050 No-Findings) X-ray
images were used in the study. COVID-19 images were increased
from 231 to 1050 by data augmentation method. We achieved
an accuracy of 91.24%, and 97.24% for binary class problem with-
out data augmented and with data augmented, respectively. In
three-class problem, we obtained an accuracy 1f 84.22% with the
data augmented. In addition, by comparing the performance of the
model we proposed with some studies in the literature, we have
provided the accuracy results for both binary class and multiple-
class problem in Table 5, and Table 6, respectively.

The advantages of the proposed model can be stated as follows;

e In this study, unlike CNN architectures, COVID-19 was deter-
mined from chest X-ray images with a smaller number of layers
(4 convolution layers + primary capsule layer). In addition, cap-
sule networks can achieve successful results with several con-
volution layers while CNN architectures need to use more layers
[30,31,52,58]. The low number of layers causes the model to be
less complex.

More COVID-19, pneumonia, and no-findings images were used
than in previous studies. This increases the reliability of the
system more.

As is known, reducing the size of the image may cause some in-
formation in the image to be lost. Given these facts, good clas-
sification accuracy has been achieved with capsule networks,
even the image size has been reduced to 128 x 128 pixels.
The image size used in many CNN-based studies is larger than
128 x 128 pixels [31,32,33].

The disadvantages of the proposed model can be stated as fol-
lows;

e Capsule networks require a lot of hardware resources when
processing large images, and accordingly processing time in-

Table 5
Comparison of the proposed method with other methods in binary class classification.

Study Type of images Number of cases Methods Data set Acc (%)

Apostolopoulos et al. [30] X-ray images 224 - COVID-19, VGG19 [41,60,61] 98.75
504 - No-Findings

Hemdan et al. [31] X-ray images 25 - COVID-19 VGG19, DenseNet121 [41] 90.00
25 - No-Findings

Narin et al. [32] X-ray images 50 - COVID-19, ResNet50 [41,62] 98.00
50 - No-Findings

Sethy et al. [34] X-ray images 25 - COVID-19, ResNet50 [41] 95.38
25 - No-Findings

Ozturk et al. [52] X-ray images 127 -COVID-19, DarkCovidNet [41] 98.08
500 - No-Findings

Panvar et al. [71] X-ray images 192 COVID-19 nCOVnet [41] 97.62%
145 - No-Findings

Wang et al. [33] CT images 325 - COVID-19, InceptionNet [66-68] 89.50
740 - Pneumonia

Zheng et al. [37] CT images 313 - COVID-19, DeCovNet [69] 90.01
229 - No-Findings

Ying et al. [38] CT images 88 - COVID-19, DRE-Net [63-65] 86.00
86 - No-Findings

The proposed method X-ray images 1050 - COVID-19, CapsNet [41,42] 97.24

1050 - No Findings
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Table 6
Comparison of the proposed method with other methods in multi class classification.
Study Type of images Number of cases Methods Data set Acc (%)
Apostolopoulos et al. [30] X-ray images 224 - COVID-19, VGG19 [41,60,61] 93.48
714 - Pneumonia,
504 - No-Findings
Ozturk et al. [52] X-ray images 127 - COVID-19, DarkCovidNet [41] 87.02
500 - Pneumonia,
500 - No-Findings
Togacar et al. [57] X-ray images 295 - COVID-19, MobileNetV2 [41,70] 99.27
98 - Pneumonia,
65 - No-Findings
Butt et al. [59] CT images 189 - COVID-19, ResNet - 86.70
194 - Pneumonia,
145 - No-Findings
The proposed method X-ray images 1050 - COVID-19, CapsNet [41,42] 84.22

1050 - Pneumonia,
1050 - No - Findings

creases. For this reason, images with the small dimensions were
used in the study.

Input image sizes must be the same to be classified with the
capsule networks. The images in the dataset differ in both size
and number of channels [41,42]. This situation requires a seri-
ous preprocessing before the images are given to the model as
input.

With the proposed model, it is aimed for physicians to make
faster decisions on X-ray images in COVID-19 detection. The work-
load of physicians can be reduced with these computer-aided
methods. In addition, rapid diagnosis is very important for physi-
cians to deal with more patients efficiently. In the future studies,
we want to use more data sets in order to validate the reliability
and accuracy of the proposed model. Also, we plan to use different
data types such as CT images to diagnose COVID-19.

4. Conclusion

In this study, an approach using capsule networks for classifi-
cation of COVID-19, no-findings, and pneumonia X-ray images is
proposed. To the best of our knowledge, there are several stud-
ies in which COVID-19 X-ray images are classified using capsule
networks. In this study, the ability of classification of COVID-19 X-
ray images of capsule networks was examined. The results showed
that capsule networks can effectively classify even in a limited data
set. Capsule networks are planned to be trained with larger data
sets to achieve the level of success that can assist physicians in the
diagnosis of coronavirus disease. A training process with large data
sets is very important in determining the validity and reliability of
the system.
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