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Abstract
In this paper, we investigate the dynamics of following higher order difference

equation
xn+1 = A+B

xn
x2n−m

with A,B and initial conditions are positive numbers. Especially we study the
boundedness, periodicity, oscillation behaviours, global asymptotically stability
and rate of convergence of related higher order difference equations.

1 Introduction

Difference equations and their systems have captured the attention of the re-
searchers over the last two decades. This attention result from area of usage
of difference equations. In particular they which arise in mathematical models
that describe problems in ecology, probability and engineering, etc. Since we
know very little about such equations, it is very important to study higher order
difference equations.
In [11], Devault et al investigated the boundedness, global stability and

periodic character of solutions of the difference equation

xn+1 = p+
xn−k
xn

where p and the initial conditions are arbitrary positive numbers.
In [13], Saleh et al investigated global asymptotic stability, periodicity and

semi-cycle analysis of the unique positive equilibrium of following difference
equation

yn+1 = A+
yn−k
yn

where A is positive and k ∈ {2, 3, · · · }.
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In [7], Abu-Saris et al studied the global stability of unique positive equilib-
rium point of following higher order difference equations

yn+1 = A+
yn
yn−k

(1)

where A is positive and k ∈ {2, 3, · · · }. Additionally, in [15], Saleh et al dealt
with the global asymptotic stability of the negative equilibrium of the difference
equation (1) where A < 0 and k ∈ {1, 2, · · · }.

In [10], Hassan studied dynamics of following difference equation

xn+1 = pxn +
q

x2n−1

where p and q lie in (0, 1).
In [9], Bešo et al investigated boundedness, global attractivity and Neimark—

Sacker bifurcation of following difference equation

xn+1 = γ + δ
xn
x2n−1

where γ, δ are positive real numbers and the initial conditions are positive real
numbers.
Motivated by the above studies, we study the dynamics of following higher

order difference equation

xn+1 = A+B
xn

x2n−m
(2)

where A, B are positive real numbers and the initial conditions are positive
numbers. Additionally, we investigate the boundedness, periodicity, oscillation
behaviours, global asymptotically stability and rate of convergence of related
higher order difference equations.
Now, we present some important theorems which used by us during this

study.

Theorem 1 (See [4]) Assume that qi ∈ R, i = 1, 2, · · · , and k ∈ {0, 1, · · · }.
Then

k∑
i=0

|qi| < 1

is a suffi cient condition for the asymptotic stability of the difference equation

xn+k + q1xn+k−1 + ...+ qkxn = 0, n = 0, 1, · · · .

Theorem 2 ([12], p. 18) Let f : [a, b]k → [a, b] be a continuous function,
where k is a positive integer, and where [a, b] is an interval of real numbers and
consider the following difference equation

xn+1 = f (xn, · · · , xn−k) , n = 0, 1, · · · . (3)

Suppose that f satisfies the following conditions:
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i. For each integer i with 1 ≤ i ≤ k + 1, the function f(z1, z2, · · · , zk+1) is
weakly monotonic in zi for fixed z1, z2, · · · , zi−1, zi+1, · · · , zk+1.

ii. If (m,M) is a solution of the system

m = f(m1,m2, · · · ,mk+1) and M = f(M1,M2, · · · ,Mk+1),

then m = M , where for each i = 1, 2, · · · , k + 1, we set

mi =

{
m, if f nondecreasing in zi,
M, if f nonincreasing in zi,

}
and

Mi =

{
M, if f nondecreasing in zi,
m, if f nonincreasing in zi.

}
Then there exists exactly one equilibrium point x̄ of the difference equation

(3), and every solution of (3) converges to x̄.

Theorem 3 (See [8]) Let n ∈ N+
n0 and g (n, u, v) be a decreasing function in

u and v for any fixed n. Suppose that for n ≥ n0, the inequalities

yn+1 ≤ g (n, yn, yn−1) ≤ un+1

hold. Then
yn0−1 ≤ un0−1, yn0 ≤ un0

implies that
yn ≤ un, n ≥ n0.

Consider the scalar kth-order linear difference equation

x (n+ k) + p1(n)x (n+ k − 1) + · · ·+ pk(n)x (n) = 0, (4)

where k is a positive integer and pi : Z+ → C for i = 1, · · · , k. Assume that

qi = lim
k→∞

pi(n), i = 1, · · · , k, (5)

exist in C. Consider the limiting equation of (4):

x (n+ k) + q1x (n+ k − 1) + · · ·+ qkx (n) = 0. (6)

Theorem 4 (Poincaré’s Theorem) Consider (4) subject to condition (5).
Let λ1, · · · , λk be the roots of the characteristic equation

λk + q1λ
k−1 + · · ·+ qk = 0 (7)

of the limiting equation (6) and suppose that |λi| 6= |λj | for i 6= j. If x (n) is
a solution of (4), then either x (n) = 0 for all large n or there exists an index
j ∈ {1, · · · , k} such that

lim
n→∞

x (n+ 1)

x (n)
= λj .
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The following results were obtained by Perron, and one of Perron’s results
was improved by Pituk, see [17].

Theorem 5 Suppose that (5) holds. If x (n) is a solution of (4), then either
x (n) = 0 eventually or

lim
n→∞

sup (|xj (n)|)1/n = λj .

where λ1, · · · , λk are the (not necessarily distinct) roots of the characteristic
equation (7).

Firstly, we take the change of the variables for Eq.(2) as follows yn = xn
A .

From this, we obtain the following difference equation

yn+1 = 1 + p
yn

y2n−m
(8)

where p = B
A2 . From now on, we handle the difference equation (8). The unique

positive equilibrium point of Eq.(8) is

ȳ =
1 +
√

1 + 4p

2
.

2 Periodicity of Eq.(8)

In this section, we study the periodic solutions of Eq.(8) with period two.

Theorem 6 Let {yn} be a positive solution of Eq.(8). Then Eq.(8) has no two
periodic solution.

Proof. We assume that there exist two periodic solution such that

· · · , α, β, α, β, · · ·

where α and β are positive and distinct real numbers. We handle two cases for
the proof of Theorem. Firstly we consider a case such that m is even. We have
from Eq.(8)

α = 1 +
p

β
, β = 1 +

p

α
.

Hence we obtain that
α2 − α− p = 0.

So we get α = 1+
√
1+4p
2 = ȳ = β which is a trivial solution. Now we deal with

the other case such that m is odd. Now we apply Elsayed’s new method for two
periodic solution, see [16]. We have from Eq.(8)

α = 1 +
pβ

α2
, β = 1 +

pα

β2
.
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Hence if we take α = βn for n ∈ R− {0, 1,−1}. Therefore we obtain that

βn = 1 +
p

n2β
, (9)

β = 1 +
pn

β
. (10)

Thus, subtracting (10) from (9) gives the following

β (n− 1) =
p

β

(
1

n2
− n

)
=
p

β

1− n3
n2

.

From n 6= 1, we have

β2 =
−p
(
n2 + n+ 1

)
n2

,

β = ±
√
−p (n2 + n+ 1)

n2
. (11)

Since β is real number, (11) is impossible for all real n and p > 0. This is a
contradiction. So the proof is completed.

3 Boundedness of Eq.(8)

This section, we investigate the bounded solutions of Eq.(8).

Theorem 7 Let 0 < p < 1. Then every solutions of Eq.(8) is bounded and
persist such that

1 < yn ≤
1− pn
1− p + pn−1C1

where C1 = p
(
y0 + 1

p−1

)
.

Proof. Let {yn} be a positive solution of Eq.(8) and p > 0. Then, we have
from Eq.(8)

y1 = 1 + p
y0
y2−m

> 1,

y2 = 1 + p
y1

y21−m
> 1.

Thus we obtain by induction yn > 1 for n ≥ 1.
Now we consider the other side. We have from Eq.(8)

yn+1 = 1 + p
yn

y2n−m
≤ 1 + pyn. (12)

According to Theorem 3, there exist a sequence yn ≤ un, n = 0, 1, · · · , where
{un} satisfies

un+1 = 1 + pun, n ≥ 1, (13)
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such that us = ys, us+1 = ys+1, s ∈ {−m,−m+ 1, · · · } , n ≥ s. Therefore the
solution of the difference equation (13) is

un =
1− pn
1− p + pn−1C1 (14)

where C1 = p
(
y0 + 1

p−1

)
. Moreover we obtain from (12) and (14),

yn+1 − un+1 ≤ p (yn − un)

where n > s and p ∈ (0, 1). So, we get yn ≤ un, n > s as desired.

4 Stability of Eq.(8)

In this here, we study the stability of Eq.(8). Firstly we handle the linearized
equation of Eq.(8) about its unique positive equilibrium point. Let I be some
interval of real numbers and let

f : Im+1 → I

be a continuously differentiable function such that f is defined by

f (yn, yn−1, · · · , yn−m) = 1 + p
yn

y2n−m
.

Therefore we have

q0 =
∂f

∂yn
=

p

ȳ2
,

q1 = q2 = · · · = qm−1 = 0,

qm =
∂f

∂yn−m
= −2p

ȳ2
.

Hence we obtain the linearized equation of Eq.(8) about its unique positive
equilibrium point ȳ as follow:

zn+1 −
p

ȳ2
zn +

2p

ȳ2
zn−m = 0. (15)

Therefore, the characteristic equation of Eq.(8) is

λm+1 − p

ȳ2
λm +

2p

ȳ2
= 0. (16)

Theorem 8 Let p ∈
(
0, 34
)
. Then the equilibrium point x̄ of Eq.(8) is locally

asymptotically stable.
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Proof. From (15), we have

|q1|+ |q2|+ · · · |qm| =
3p

ȳ2
.

Note that
p

ȳ2
=

2p+ 1−
√

4p+ 1

2p
.

Thus

|q1|+ |q2|+ · · · |qm| =
3p

ȳ2
< 1,

3
(
2p+ 1−

√
4p+ 1

)
2p

< 1,

4p+ 3− 3
√

4p+ 1

2p
< 0.

Hence, we get from p > 0,(√
4p+ 1− 1

)(√
4p+ 1− 2

)
< 0.

So, we obtain 0 < p < 3
4 . Therefore, the proof of Theorem 8 is completed.

Theorem 9 Let 0 < p < 3
4 . Then the equilibrium point ȳ of Eq.(8) is globally

asymptotically stable.

Proof. Firstly, we consider the following function

f(u, v) = f (yn, yn−m) = 1 + p
yn

y2n−m
.

The function f(u, v) is nondecreasing in u and nonincreasing in v. Let (m,M)
is a solution of the system

m = f(m,M) and M = f(M,m).

Hence we obtain that

m = 1 + p
m

M2
,M = 1 + p

M

m2
.

Therefore we have m = M . According to Theorem 2, every solution of Eq.(8)
converges to x̄, as desired.

5 Rate of Convergence of Eq.(8)

In this section, we handle the rate of convergence of Eq.(8).
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Theorem 10 Every solution of Eq.(8) satisfies both of the following asymptotic
relations

lim
n→∞

∣∣∣∣yn+1 − ȳyn − ȳ

∣∣∣∣ = |λj | ,

lim
n→∞

sup (|yn − ȳ|)1/n = |λj |

where j ∈ {1, · · · , k} and λj are the roots of characteristic equation (16).

Proof. We get from Eq.(8):

yn+1 − ȳ =

(
1 + p

yn
y2n−m

)
−
(

1 + p
ȳ

ȳ2

)
=

p

y2n−m
(yn − ȳ)− p (y + yn−m)

ȳ · y2n−m
(yn−m − ȳ) .

Set en = yn − ȳ. Therefore we have

en+1 + pnen + qnen−m = 0,

where

pn = − p

y2n−m
, qn =

p (y + yn−m)

ȳ · y2n−m
.

Due to the equilibrium point ȳ of Eq.(8) is globally asymptotically stable, we
get

lim
n→∞

pn = − p

ȳ2
, lim
n→∞

qn =
2p

ȳ2
.

Hence, the limiting equation of Eq.(8) is the linearized equation (15).

6 A Numerical Simulation

This section, we present a numerical example for verify our theoretical results.

Example 11 Consider Eq.(8) for m = 5 and p = 0.7. Hence we have following
difference equation

yn+1 = 1 + 0.7
yn
y2n−5

. (17)

Let the initial conditions are y−5 = 10, y−4 = 6, y−3 = 8, y−2 = 4, y−1 =
3 and y0 = 5. Then unique positive equilibrium point of Eq.(17) is globally
asymptotically stable. See Figure 1.
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Figure 1: Plot of Eq.(17).

7 Conclusion and Open Problems

During this paper, we investigate the dynamics of difference equation (8). We
firstly find out that Eq.(8) has not periodic solution with period two. Then we
reveal the bounded solution Eq.(8). Moreover, we discover that the equilibrium
point ȳ of Eq.(8) is globally asymptotically stable. Additionally, we study the
rate of convergence of Eq.(8). Finally we present an example in order to verify
our theoretical results.
Open Problem 1: Investigate the dynamics of following higher order dif-

ference equation
xn+1 = A+B

xn
xrn−m

where the initial values are real numbers and r ∈ {3, 4, · · · }.
Open Problem 2: Investigate the dynamics of following higher order dif-

ference equation

xn+1 = A+B
xqn

xrn−m

where the initial values are real numbers and r ∈ {2, 3, · · · }, q ∈ {2, 3, · · · }.
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