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Abstract. In this paper, our main interest is to create/ construct a new useful

and outstanding algorithm to obtain roots of the real polynomial represented

by f(x) = c0 + c1x+ ...+ cix
i + ...+ cnxn where coefficients of the polynomials

are real numbers and x is a real number in the closed interval of R. Also,

our results are supported by numerical examples. Then, a new algorithm is

compared with the others (writer classical methods) and this algorithm is more
useful than others.

Introduction. In the third millennium BC, solutions of the f(x) = c0 + c1x+ ...+
cix

i + ... + cnx
n polynomial was initially determined. Still, some open problems

on this kind of polynomial are unsolved even if many important and useful results
were obtained on such polynomial. There are many methods such as Bairstow’s
Method, Bernoulli’s Method, Graee’s Root-squaring Method, Laguerre’s Method,
Eigen- values of Companion Matrix etc., which are used to find roots of real poly-
nomials.

In [1, 8, 7], D. Aaid et al. proposed an approximation to obtain a global mini-
mum of the univariate objective function. C. S. Adjiman and his co-authors creat-
ed/constructed a based Branch and Bound global optimization useful on the bounds
of global minimum in [2]. Chen, X.D et al. gave some kind of clipping method to
compute roots of polynomials in [5, 3, 4]. Also, the book of C. De Boor [6] includes
different type of methods to calculate the root of polynomials. In [10] Le Thi and
his collaborators approached (P ) and (PC) problems. They created an algorithm
with numerical examples for then by working as Branch and Bound approximation-
s. Then, they described an adapted Branch and Bound algorithm to approximate
the real roots of a polynomial in [11]. Some potential authors with A. Zidna also
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proposed two algorithms to obtain all zeros of a polynomial in a power basis (BR)
and (BB) in [12].

In [13], M. Ouanes et al. demonstrated new quadratic lower bound and supported
their results by numerical examples. SLEFE theory was introduced and determined
SLEFE isolation algorithm by P. Jiang et al. in [9]. A. Shpak [14] constructed a
significant theory on a wider class of objective functions.

The main problem is to solve the real polynomial equation:

f(x) = c0 + c1x+ ...+ cix
i + ...+ cnx

n = 0 (1)

with n ≥ 2 for ci ∈ R (∀i = 0, ..., n) and x ∈ [a, b] ⊂ R.
In this work, we propose an efficient combination among Branch, Bound and

Reduce method with piecewise tighter bounds see Figure (1−3) to compute real
roots of real polynomials.

We construct piecewise quadratic underestimation and piecewise overestimation
functions for a given polynomial f over a closed interval [a, b] with some properties.

Benefits of the paper can be given as follows:

1. The polynomial is well framed since the distance between the polynomial and
the bounds functions is reduced as long as we need/want.

2. The concavity and convexity test detects the regions whether or not the func-
tion is convex/concave.

3. To remove subintervals, which don’t include zeros of a polynomial, make pro-
cess speedy and increase the rate of reduction.

Advantages of this method can be said that the polynomial is well framed and
the distance can be small as one may like it, which makes the process is faster. The
results on the piecewise quadratic lower bounding function are better and more
useful than other techniques such as given in [6], [10] or [2].

Paper is prepared by using four sections such as preliminaries, algorithms, proofs,
numerical examples, etc.

1. Piecewise Quadratic Bounds. Considering definition of the lower bound, the
upper bound was constructed in [1] similarly. Assume that X = [a, b] be a bounded
closed interval in R and f be a continuous differentiable polynomial with second
degree on X. For x0 and x1 real numbers in [a, b] such that x0 ≤ x1, l0 and l1 real
valued functions were defined in [6] as follows:{

l0(x) = x1−x
x1−x0 if x0 ≤ x ≤ x1

l1(x) = x−x0

x1−x0 if x0 ≤ x ≤ x1
. (2)

Also, we have the following equations:

l0(x) + l1(x) = 1, ∀x ∈ [a, b], (3)

and

li(x
j) =

{
0 ; i 6= i
1 ; i = j

. (4)

We suppose that h = x1 − x0 and Lhf be the linear interpolant to f at points x0,
x1. Then, the following equation holds where f(x) is a univariate polynomial with
degree n > 1.

Lhf(x) =

1∑
i=0

li(x)f(xi). (5)
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Let us find the whole roots of it in the closed interval [a, b], which is divided into
the n equal subintervals, for xi = a+ ih, h = b−a

n and i = 0, ..., n.
Then, we can create a new overestimator of f which is corresponding with local

quadratic overestimation as:

Ui(x) = Lhi
f(x) +Qi(x), i = 0, ..., n− 1, (6)

where Qi(x) = 1
2Ki(x−xi)(xi+1−x) for i = 0, ..., n−1. In this equation, Ki (which

is valid for [xi, xi+1]) is defined by upper bound of the second derivation. Our aim
is to construct a piecewise quadratic upper bound instead of quadratic upper bound
over [a, b].

Theorem 1.1. Let f be a function as follows

f(x) ≤ U(x) for all x ∈ [a, b],

such that

U(x) =


U0(x) ; x ∈ [x0, x1]

...
Ui(x); x ∈ [xi, xi+1]

...
Un−1(x); x ∈ [xn−1, xn]

. (7)

Then, U(x) is a continuous piecewise concave over-estimator of f(x) for all x in
[a, b].

Proof. We consider the φ function (which is defined on closed subintervals [xi, xi+1]
for i = 0, ..., n− 1) as follows:

φ(x) = Ui(x)− f(x) = Lhi
f(x) +

1

2
Ki(x− xi)(xi+1 − x)− f(x). (8)

Considering (7) equation, we get the following equation:

φ′′(x) = −f ′′(x)−Ki ≤ 0, i = 0, ..., n− 1, x ∈ [xi, xi+1].

This shows that φ is a concave function and we obtain that following inequality is
satisfied

φ(x) ≥ min{φ(x), x ∈ [xi, xi+1]} = φ(xi) = φ(xi+1) = 0. (9)

1.1. Concave convex test. αi and βi (i = 0, ..., n − 1) values can be computed
on each subintervals [xi, xi+1] , (i = 0, ..., n− 1) where :

αi ≤ f ′′(x) ≤ βi, for all x ∈ [xi, xi+1].

Besides, the following statements are obtained for the test.

• if αi ≥ 0 (it means that 0 ≤ f ′′(x) is satisfied for all x ∈ [xi, xi+1], (i =
0, ..., n − 1) then f is a convex function on the closed subinterval [xi, xi+1].
So, the local lower bound holds Lif(x) = f(x) on the closed interval [xi, xi+1].

• if βi ≤ 0 (it means that f ′′(x) ≤ 0 is held for all x ∈ [xi, xi+1], (i = 0, ..., n−1)
then f is a concave function on the closed subinterval [xi, xi+1], (i = 0, ..., n−
1). Thus, the local upper bound Uif(x) = f(x) satisfies on [xi, xi+1], (i =
0, ..., n− 1).

So, we can easily say that the βi and αi, (i = 0, ..., n−1) are computed by interval
analysis (for background and more information, one may look at the reference [14]).



66 DJAMEL AAID, AMEL NOUI AND ÖZEN ÖZER

Remark 1. Following properties are satisfied by proposed bounds:

1. If the concave convex test is satisfied, then the proposed bounds match up
with the f(x) polynomial.

2. The lower bound is continuous piecewise convex on the closed interval [a, b].
3. The upper bound is continuous piecewise concave on the closed interval [a, b].
4. Both lower bound and upper bound match up with the f(x) function at the

end point of the closed subinterval [xi, xi+1] for i = 0, ..., n− 1.
5. Both lower bound function and upper bound function are determined explic-

itly.
6. The upper bound and lower bound functions would approach the polynomial

as much as we would like.

2. Branch, Bound And Reduce Algorithm (BBR). In this section, we de-
scribe the Branch, Bound and Reduce algorithm for the sake of finding/obtaining
all real roots of the polynomials where the polynomial degree is greater than one. To
get all zeros of the polynomial with degree n ≥ 2 , we need to determine subdivision
of the closed interval [a, b] in n part like [xi, xi+1] for i = 0, ..., n− 1.

We know that f polynomial has n roots which are taken into consideration the
multiplication of zeros. This result includes two different cases defined as follows;

1. In the first case: if f(xi)> 0, then we are interested in the local lower bound by
solving the equation on each subinterval [xi, xi+1] with second degree. There
are three (3) different conditions to investigate for

Lif(xi) = 0

as follows;
• Conditions 1: if there is no zero of the local lower bound equation

Lif(xi) = 0

for some i = 0, ..., n− 1, then the interval [xi, xi+1] will not be considered
for algorithm.
• Conditions 2: if the equation

Lif(xi) = 0

has just one solution r, then we check whether or not the latter is a zero
of polynomial f and look for more precise searches by reducing this part
to [r + ε, xi+1].
• Conditions 3: if the equation

Lif(xi) = 0

has two different roots r1 and r2, then we have to check whether the latter
are a zeros of polynomial f or searching in the reducing part [r1+ε, r2−ε].

2. In the second case : if f(xi) < 0, then one quit at the local upper bound by
solving the equation of the second degree on [xi, xi+1].

Uif(xi) = 0.

In a similar way, if we proceed with all steps of the first case, then the following
algorithm can be given.

Algorithm
Input :

• [a, b] : a real interval.
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• ε : the accuracy.
• f : the polynomial.
• n: the degree of the polynomial.

Output :

• Z: the set of all found zeros of f (Z=ZeroPolynom(f, n, a, b) ).

Subdivision and evaluation
for all i = 0, ..., n

• Compute xi = a+ b−a
n i, and set M =

⋃n−1
i=0 {[xi, xi+1]}

• while ∃ i such that (xi+1 − xi) ≥ ε do

for all i = 1, ...,nb such as nb: number of subintervals in M

• Compute βi, αi and Ki on each [xi, xi+1]
• Compute f(xi )

First case (f(xi ) > 0)

• Solve the equation Lif(x) = 0;

1. if Lif(x) has no root in [xi, xi+1] then delete [xi, xi+1] to the set M
2. else if Lif(x) has one root r ∈ [xi, xi+1]

• if |f(r)| < ε, then Zi = Zi ∪ {r},
• Zi = Zi∪ ZeroPolynom(f, n, r + ε, xi+1)

3. else if Lif(x) has two roots r1 and r2 in [xi, xi+1], then
• if |f(r1)| < ε, then Zi = Zi ∪ {r1}
• if |f(r2)| < ε, then Zi = Zi ∪ {r2}
• Zi = Zi∪ ZeroPolynom(f, n, r1 + ε, r2 − ε)

Second case (f(xi ) < 0 )

• Solve the equation Uif(x) = 0;

1. if Uif(x) has no root in [xi, xi+1] then delete [xi, xi+1] to the set M
2. else if Uif(x) has one root r ∈ [xi, xi+1] ,

• if |f(r)| < ε, then Zi = Zi ∪ {r},
• Zi = Zi∪ ZeroPolynom(f, n, r + ε, xi+1)

3. else if Uif(x) has two roots r1 and r2 in [xi, xi+1], then
• if |f(r1)| < ε, then Zi = Zi ∪ {r1}
• if |f(r2)| < ε, then Zi = Zi ∪ {r2},
• Zi = Zi∪ ZeroPolynom(f, n, r1 + ε, r2 − ε)

Z = Zi, Return Z

end algorithm.

Remark 2. The proposed BBR algorithm is specially designed to deal with poly-
nomials, neither convex nor concave. By using the concave convex test, sometimes
we come across partitions in which the polynomial is convex or concave. In this
case, we will not need to go through all the steps of the algorithm, just solve the
equation Uif(x) = 0 or Lif(x) = 0. If we come across a partition in which the
polynomial is neither convex nor concave, it means the concave convex test is not
verified. Consequently, we will have to frame it by our bounding functions by ap-
plying the procedures of the BBR algorithm step by step until all the zeros of the
polynomial are obtained.

Illustrative example
Assume that f(x) = x(x− 1)(x− 2) = 0 polynomial in [0, 2] . For finding roots

of polynomial, we apply our algorithm to the polynomial.
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First, we divide the closed interval [0, 2] into the two equal parts such as [0, 1]
and [1, 2]. If we apply our method (concave convex test) on to f polynomial, we get
f ′′([0, 1]) ≤ 0 implies that f is concave on [0, 1] and also {0, 1} is the set of roots
of f due to the solutions of U1(x) = 0. So, we obtain that the interval [0, 1] will
be removed from the search list. Besides, we have f ′′([1, 2]) ≥ 0. This gives that
f is convex on [1, 2] and {1, 2} is the set of roots of f because of the solutions of
L2(x) = 0. Therefore, the polynomial has only three roots as 0,1 and 2. So, we can
be able to determine the polynomial’s roots, thanks to concave convex test.

2.1. Converge of the Algorithm.

Theorem 2.1. The algorithm can be stopped if the least one of the following con-
ditions is satisfied.

1. The length of all closed subinterval [xi, xi+1] is less than ε.
2. The local lower bound (local upper bound ) of the polynomial has no root in

all closed subinterval [xi, xi+1] for ε = 0. So, we get lim
hi→0

(Uif(x)− f(x)) = 0

and lim
hi→0

(f(x)− Lif(x)) = 0 for (hi = xi+1 − xi )

Proof. We can prove that

lim
hi→0

(Uif(x)− f(x)) = 0,

since we have the following inequalities

0 ≤ Uif(x)− f(x) ≤ 1

2
Ki(x− xi)(xi+1 − x) ≤ 1

2
Kih

2
i .

In a similar way,

lim
hi→0

(f(x)− Lif(x)) = 0,

due to inequality

0 ≤ f(x)− Lif(x)(x) ≤ 1

2
Ki(x− xi)(xi+1 − x) ≤ 1

2
Kih

2
i .

3. Numerical Examples. To measure the performance of our BBR algorithm,
we compare our algorithm with BB algorithm given in [12] and BR algorithm
presented in [11, 12]. BB and BR algorithms are implemented by C++ programme
language with double precision floating point. Also, the property of computer is
Intel (R) Core (TM) i3-311MCP4 with CPU 2.40GHz. Numerical results are given
within four examples.

In this work, our aim is to compute αi, βi and Ki constants. So, we consider the
combination of BB and BR methods in our method BBR.

Here below, we give four examples and we compare our results with those of
published papers [11, 12]. We use approximate computations with a small precision
10−9 for the idea of our paper (our precision). Let z1, z2, ..., zk be the exact polyno-
mial zeros and r1, r2, ..., rk be the zeros determined with an experimental method.
The relative error ζi on the zero zi is determined as follows:

ζi = min
0≤i≤k

|zi − ri|
|zi|

.
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The average relative error is given by:

ζ =
1

n

n∑
i=1

ζi.

Our proposed method BBR uses piecewise bounding functions that require fine
subdivision of the interval to be explored, involving a multiple research that can
detect all cases, namely; convex (concave) regions, neither convex nor concave re-
gions, and regions that do not contain zeros of the polynomial. By pressing this
technique, the BBR method will determine all the zeros of the polynomial with an
excellent accuracy 10−9 and with the least relative error in a short time.
Example 1

Let P (x) =
n∏
i=0

(
x− i

n

)
be a polynomial. If it is given by multiplying the monomials

(x− 1/10)...(x− 9/10), then we obtain

P1(x) = −0.000362880 + 0.010265760x− 0.117270000x2 + 0.723680000x3

− 2.693250000x4 + 6.327300000x5 − 9.450000000x6 + 8.700000000 x7

− 4.500000000x8 + 1.000000000x9.

Table 1. Numerical results of Example 1

Example 2

Assume that the polynomial P (x) is defined by P (x) =
n∏
i=0

(x− θi) 0 < θi < 1. If

we chose n = 10, then we get the following polynomial:

P2(x) = 0.000001844x0− 0.000171607x+ 0.005343025 ∗ x2 − 0.076828641x3

+ 0.577913722x4 − 2.479205141x5 + 6.376540019x6 − 9.980342796x7

+ 9.283051040x8 − 4.706300000x9 + 1.000000000x10.

Example 3

Let us consider polynomials which are in the form of
n∏
i=0

(
x− 1

2i

)
.
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Table 2. Numerical results of Example 2

Table 3. Numerical results of Example 3

For n = 8, the polynomial is obtained by:

P3(x) = 0.000000000− 0.000000007x+ 0.000001257x2 +−0.000090483x3

+ 0.002991959x4 +−0.046327114x5 + 0.329437256x6 − 0.996093750x7

+ 1.000000000x8.

Example 4
Laguerre Polynomials. For θ ≥ 0, the generalized Laguerre polynomials of order

n, which is represented by Lθn, are given by the following recurrence:

(n+ 1)Ln+1(x)θ(x) = (2n+ θ + 1− x)Lθn(x)− (n+ θ)Lθn−1(x)

for Lθ0(x) = 1 and Lθ1(x) = 1 + θ − x.
We have proposed an approximation to get an automated construction of bound-

ed functions with one variable. The synthesis of bounds are driven by rules applied
to algebraic expression of a function. The proposed approach is experimental-
ly compared with adapted (BB) or (BR). Experiments have demonstrated that
some functions with proposed method can significantly outperform to standard ap-
proaches. It should be noted that our approach can be helpful in a different kind
of multivariate functions.
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Table 4. Numerical results of Example 4

4. Conclusion. It is conspicuous to discern that our work/algorithm is more use-
ful, effective and practical than the classical ones. Indeed, this new algorithm
facilitates the determination of the solutions on either convex or concave region
due to the solutions of second-degree equation, as well as quadratic lower bound
or quadratic upper bound. Also, this algorithm enables us to expedite the process
and to eliminate subintervals that do not contain solutions. Finally, we recommend
other researchers to use the obtained results in further studies.

Figure 1. The underestimator in (BB) and (BR)
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Figure 2. The underestimator in our method (BBR)

Figure 3. Tightness of our underestimator p(x) than the q(x)
used in the classical methods (BB) and (BR)
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