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1. Introduction

Additivity, subadditivity and superadditivity plays an important role both in measure theory and
in different fields of mathematics. Especially, the subadditive principle is a powerful and effective
approach for solving numerous problems that arises not only in pure and applied mathematics but
also in mathematical physics and other applied sciences. Subadditivity occurs in the thermodynamic
chatacteristics of non-ideal solutions and blends like the excess molar volume and heat of mixing or
excess enthalpy. An other interesting aspect of subadditivity is its close relationship with inequalities.
Inequalities and subadditive functions can be seen in electrical network, ergodic theory and dynamic
systems, quantum relative entropy, perturbations of repulsive and equilibrium theory, see, for example
[2,6,12,18,19]. Here, we mention the results of [3,5, 10, 17] and the references therein.

Definition 1.1. A function f : [0,0) C R — R is said to be subadditive if for every x,y € [0, o),
fa+y) <f0)+f0).
If equality holds, f is called additive. If the inequality reversed, f is called superadditive.

Definition 1.2. A real valued function f is convex on the positive real line [0, ) , if

fax+A -y <tf(x)+A -0 f )
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holds for all x,y € [0,00) and t € [0, 1].
Remark 1.3. If f is convex and subadditive on [0, o) and if f (0) = 0, then f is additive on [0, o).

Definition 1.4. /23] The function f : [0,b] — R, b > 0 is said to be starshaped if we have f (tx) <
tf (x)forall x € [0,b] and t € [0, 1].

Remark 1.5. If a subadditive function f : A C [0,00) — R is also starshaped, then f is a convex
function.

The concept of convexity is one of the most important research area in many branches of pure and
applied mathematics. It has a key role in many fields of applications, especially in optimization theory
and the theory of inequalities. A useful inequality for convex functions is given as follows:

Let f is a convex function on the interval I = [u, v] of real numbers with u < v, then

f(””)s ! fvf(x)dxsw, wvel (1.1

2 vV—u

This double inequality is well known in the literature as Hermite-Hadamard integral inequality for
convex functions (see, e.g., [4, 15]). Recently, Hermite-Hadamard integral inequality for convex
functions has received renewed attention by many researchers and as gradually a remarkable of
generalizations, extensions and refinements in various directions have been found,
see [1,7-9,11,13,14,16,20-22] and the references included there.

2. Main results

In this section, first we give definition of exponential subadditive functions. Then, we establish
Hermite-Hadamard type integral inequalities and related inequalities for exponentially subadditive
functions.

Definition 2.1. Let @ € R. A function f : I C [0,00) — R is said to be exponentially subadditive
function, if

f®, f0)

eux e

flx+y <
forall x,yel.
Proposition 2.2. Let I C [0, o0) be a real interval and f : I — R is a function, then;

1. If « > 0 and f is an exponentially subadditive function, then f is a subadditive function.
2. If a < 0and f is a subadditive function, then f is an exponentially subadditive function.

Proof. 1. For a > 0, we have ¢**> 1, x € [0, 00) . If f is an exponentially subadditive function, then
fx  fO)

+
ex e

fx+y) < Sf@+fO)
for all x,y € [0, 00). So, f is a subadditive function.
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2. For @ < 0, we have e**< 1, x € [0, 00) . If f is a subadditive function, then

f@ [

eax ey

fa+)sf@+fO) =<

for all x,y € [0, 00). So, f is an exponentially subadditive function.
O

Remark 2.3. For a = 0, the definition of exponential subadditive function reduces to the definition of
subadditive function.

Example 2.4. Leta > 1 and f : [1,00) = R, f(x) = cforc <0, then f is an exponentially subadditive
function. For every x,y > 1, e®") > ¢ + ¢ So, one has ce®*™ < c (e + e®) . Thus,

M)— (1 l)zf(x) fo

+
ea(x+ y)

=cC
ex ey

f(x+y)zc§c(

oux e
Example 2.5. Let « < 0 and f (x) = v/x for x € [0, 00). For every x,y > 0, we have

FOa+y=Vr+y< Vx+\y=f0+ Q).

So, f is a subadditive function. From Proposition 2.2, f is also an exponentially subadditive function.

Theorem 2.6. Let f : [u,v] C [0,0) — R be a continuous exponentially subadditive function, then

", L@, (@,

eax u Jo eZax v Jo eZax

1 1
—fu+v) < —
2 V—u

Proof. Let x € [u,vl]and x = tu+ (1 —t)v(orx=(1 - u+tv) for ¢t € [0, 1]. By using exponential
subadditivity of the function f, we have

fu) (A=)

flu+ (1= D) < 28+ s

2.1

and
f(A=Du)  [@)

el —Hu ey '

f=-Du+t)< (2.2)

Adding (2.1) and (2.2), and by using the fact that f is an exponentially subadditive function, we have

fu+v) fu+(A-0v+{1 —-Du+tv)

fu+d-1v) +f((1—t)u+tv)

ea(tu+(1 —1v) ea((] —Hu+tv)

fw _ f-0v) f-dw) [

e(t(Ztu+(1—t)v) e(l(tu+2(1—t)v) ea/(Z(l—t)u+tv) ea/((l—t)u+2tv) :

(2.3)

Integrating both sides of (2.3) with respect to 7 on [0, 1], it follows that

" =-Du+mw)

ea/((l—t)u+tv)

Pfau+ A -10v)

ea/(tu+(l—t)v)

dt + dt

fu+v) <

0 0
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b faw

ea(21u+( 1-t)v)

ofw)

e((1-Du+2tv) :

< 2

dr+?2

0 0

By using the change of variable technique, we obtain that

Lrme o [0 L L0, 1 [ 10,
2 v—uJ, eax u J elax v Jo p2ox

which completes the proof of the theorem. O

Remark 2.7. Note that, for a = 0, Theorem 2.6 reduces to Theorem 2 in [21].

Remark 2.8. Under the conditions of Theorem 2.6, if f(tx) < tf (x) and a = 0, then Theorem 2.6
becomes to Corollary 1 in [21].

Theorem 2.9. Let f,g : [u,v] C [0,00) — R be two continuous exponentially subadditive functions,

then
LI R ACOT{CN

v—uJ, elax
PN ICTICTN Vf(»gg(x)d“zf [f(tu)g((l—t)v)+f((1—t)v)g(tu) »

uJo eax v Jo e2ax 0 ea/(tu+(1—t)v)

u 2 2 v 2 2
< 1[ [(f(X)) 2+(g(x)) ]dx+1f [(f(X)) 2Jr(g(X)) ]dx
elax v Jo elax

uJo
" f f ) (A =0v) +g (g (L =0v)
0

ea(tu+( 1-t)v)

Proof. Since f and g are exponentially subadditive functions, we have

f(u) f(A-Dv)

fu+(1-1v) < g + R (2.4)
g(tu+(1-1)v) < gefjt”) g -Dv) 2.5)

u ea/(l—t)v

Multiplying the inequalities (2.4) and (2.5) , we get

fu+ (A -pv)gttu+ (1 -1v)
(f(tu) JACE! —I)V))(g(tu) g((1 —t)V))

eviu ea(l—t)v

IA

et ea(l—t)v

fawg@) fug-nv) [A-Dvgw) f(1-0v)gd-1v)
eZmu eoz(tu+(1—t)v) eaf(tu+(l—t)v) e2a/(1—t)v
%[(f(tu) A z>v>)2 N (g(m) L 8- r)v))zl_

IA

et ea(l -ty et ea( 1=t

Taking integral with respect to 7 on [0, 1] and changing the variables of integration, we get the desired
result. =
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Remark 2.10. Note that, for @ = 0, Theorem 2.9 coincides with Theorem 3 in [21].

Remark 2.11. Under the conditions of Theorem 2.9, if f (tx) < tf (x) and a = 0, then Theorem 2.9
reduces to Corollary 2 in [21].

Theorem 2.12. Let f,g : [u,v] C [0,00) — R be two continuous exponentially subadditive functions,

then
%f(u+v)g(u+v) (2.6)
< 1 vf(x)zg(x)dx
v—uJ, e~ax
1 fl [f(tu)g((l —Du)  f)g((I-0v) [fQu)g(v)+ f@v)g(tu)
+ + dt.
ea(u+v) 0 e evv ea(u+v)

Proof. By using exponential subadditivity of the functions f and g, we can write

fu+1-1v) +f((1—t)u+tv)

ea(tu+(1—t)v) ea((l—t)u+tv)

fu+v) < , 2.7)

gtu+(1-0v) g -Du+tv)
ea(tu+(1—t)v) ea((l—t)u+tv)

gu+v) < (2.8)

Multiplying the inequalities (2.7) and (2.8), we have

fwu+v)gu+v)
fu+ (A -pv)gtu+ (1 -1v) +f((1—t)u+tv)g((1—t)u+tv)

IA

eZ(x(tu+(1—t)v) eZar((l—t)qu)
+f(tu+ d-Dv)gI-Du+tv)+f((A-Du+tv)gtu+(1 -1v)
ea(u+v)

fu+A-0vygttu+(1-0v) f((A-dDu+tv)g((1-t)u+1tv)

< eZa(tu+( 1-1)v) + e2a(( 1=tHu+tv)
1 [(f(tu) N S —l)V))(g((l —u) N g(IV))
ear(u-H)) eatu ea(l—t)v ea(l—t)u eatv
+(f((1 —u) N f(IV))(g(lu) N g((1— t)V))
ea/(l—t)u ey evtu ea(l—t)v

fu+(A-0v)gtu+(1-1)v) +f((l—t)u+tv)g((1—t)u+tv)

eZa(tu+( 1-1)v) 620(( 1-Hu+tv)

e(x(u+v) eau eat(u+v) eoz(l—t)(u+v) ey

1 [f(tu)g((l—t)u) LSwg@) fA-Dvgd-nuw fA=-Dv)gtv)

S =-Dwe) fA-Dwe(@-0v) f)glhu) f)gd-nv)|

e eat(u+v) ea( 1-H)(u+v) e

Integrating with respect to # on [0, 1], we have
fw+v)gu+v)
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2 ) f(x)g(x)dx

T ov—uJ, e2ax
2 fl [(f(tu)g((l -nu)  f(v)g( —t)V)) (f(tu)g(IV) f(IV)g(tu))]
+ + dt.
ea(u+v) 0 e e ea(u+v) ea(u+v)
which gives us the required result. O

Remark 2.13. Note that, for a = 0, (2.6) coincides with (2.10) of Theorem 4 in [21].

Theorem 2.14. Let f,g : [u,v] C [0,00) — R be two continuous exponentially subadditive functions,

then
1 vV
f () g (x)dx (2.9)
v—uJ,
L (Mg L (Mg L fawg@=0v)  f@v)gd-Du
< u Jy p2ax dx + v Jo p2ax dx + 2 j(; [ ea(tu+(1-1)v) ea(1=nu+1v) at.

Proof. Since f and g are exponentially subaddititive functions, we can write

fuw) f(A=-0Dv)

flu+ (1= 0v) < 28+ s

g(w)  g((1-0v)
gtu+(1-1v) < ’

2

atu ea( 1-t)y
and

f(=Hu+t)< S =u) f(w)

e®(1-tu ey ’
gd-Du) gv)
g =-Du+t)< el el

Multiplying the above inequalities, we get

fu+ A -pv)gttu+ (1 -0v)+f((1-Du+tv)g((1 -Hu+1tv)
f(tu)g(tu)+f(tu)g((1—t)V)+f((1—t)V)g(tu)+f((1—t)V)g((1—t)V)

- eZa/tu ea(zu+(1—t)v) ea/(tu+(l—t)v) eZa/(l—t)v
+f((1 —Du)g (1 —1u) N S =Dug@v) N S@)g((1-1nu) N S @) g )
eZoz(l—t)u eoz((l—t)u+tv) ea((l—t)u+tv) eZoztv :

Taking the integral with respect to ¢ on [0, 1] and changing the variables of integration, we get the
desired result. |

Remark 2.15. Note that, for a = 0, (2.9) coincides with (2.11) of Theorem 4 in [21].
Remark 2.16. If one takes f (tx) < tf (x), and @ = O, the combination of Theorem 2.12 and Theorem
2.14 gives Corollary 3 in [21].

3. Conclusion

In this paper, we have introduced and studied a new class of subadditive functions, which is called
exponentially subadditive function. We have established Hermite-Hadamard type integral inequalities
and related inequalities. By selecting specific values of parameters quite interesting results can be
obtained. The idea can be extended for more diversified classes for subadditive functions.
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