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We present an algebraic construction based on state transformmatrix (companionmatrix) for 𝑛×𝑛 (where 𝑛 ̸= 2
𝑘, 𝑘 being a positive

integer) binarymatrices with high branch number and low number of fixed points.We also provide examples for 20×20 and 24×24

binary matrices having advantages on implementation issues in lightweight block ciphers and hash functions. The powers of the
companion matrix for an irreducible polynomial over GF(2) with degree 5 and 4 are used in finite field Hadamard or circulant
manner to construct 20 × 20 and 24 × 24 binary matrices, respectively. Moreover, the binary matrices are constructed to have good
software and hardware implementation properties. To the best of our knowledge, this is the first study for 𝑛 × 𝑛 (where 𝑛 ̸= 2

𝑘, 𝑘
being a positive integer) binary matrices with high branch number and low number of fixed points.

1. Introduction

Modern block ciphers are made of several rounds. Each of
these consists of confusion and diffusion layers. Confusion
and diffusion are two principles of the operation of a secure
cipher as identified by Shannon [1]. Many block ciphers use
linear transformations together with nonlinear substitution
boxes (S-boxes) to implement Shannon’s principles. In addi-
tion, many block ciphers use S-boxes based on the inversion
mapping in a finite field [2, 3]. In a block cipher, a linear
transformation is employed to provide the required diffusion.
The linear transformation guarantees all the output bits to
depend on all the input bits after few rounds.The substitution
layer or nonlinear layer provides the necessary confusion
making this dependency complex and nonlinear [4]. A linear
transformation provides diffusion by mixing bits of the fixed
size input block to produce the corresponding output block of

the same size [5]. The two existing techniques of measuring
diffusion for linear transformations are the branch number
[6] and the number of fixed points [5]. The branch number
denotes the minimum number of active S-boxes for any two
consecutive rounds and represents diffusion rate and mea-
sures security against linear and differential cryptanalysis.
To achieve better diffusion property, many modern ciphers
use linear transformations with high branch number. On the
other hand, the number of fixed points provides an indication
of how well the linear transformation effectively changes the
value of the input block when producing the output block.
The basis of the idea is that there is no diffusion at fixed points
since the input blocks at these points are left intact by the
linear transformation.Note that the expected number of fixed
points in a random linear transformation is one [5].

Many block ciphers use maximum distance separable
(MDS) and maximum distance binary linear (MDBL) codes
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as diffusion layers in their round function. The AES [7] and
Khazad [8] use MDS codes; the Camellia [9] and ARIA
[10] use MDBL codes. It is known that MDS matrices do
not give a compact implementation in hardware, for exam-
ple, AES. Most diffusion layers are linear transformations
having matrix representations over GF(2𝑚) or GF(2). The
binarymatrices, havingmatrix representation overGF(2), are
employed as diffusion layers in block ciphers like Camellia
and ARIA. An advantage of using such binary matrices in
the design of block ciphers compared with MDS codes is
the implementation phase where only XOR operations are
needed while MDSmatrices may need XOR operations, table
look-ups, and xtime calls [11]. Furthermore, the 8 × 8 and
16 × 16 binary matrices used in Camellia and ARIA have
the maximum branch numbers 5 and 8, respectively, and are
therefore called MDBL codes [4]. In [12, 13], an algebraic
construction method to generate 8 × 8, 16 × 16, and 32 ×

32 binary matrices of maximum branch number was given.
There is no general method for 𝑛 × 𝑛 binary matrices where
𝑛 ̸= 2

𝑘, 𝑘 being a positive integer. Constructing diffusion
layers with high branch numbers, low number of fixed points,
and low-cost hardware/software implementations is an open
problem for lightweight block ciphers and hash functions.

In recent years, lightweight cryptography has attracted a
lot of attention from the crypto community since the use of
resource constraint devices has been increasing. There are
several lightweight block cipher constructions with 80-bit
and 96-bit block sizes in the literature [14–17]. However, these
proposals neglect important real-world constraints except a
small chip area and they have different deficiencies as listed
below:

(i) the lack of efficiency on low-cost processors,

(ii) a vast amount of program memory storage,

(iii) high execution times due to the high number of
rounds,

(iv) the lack of security assessment in detail.

The wide-trail strategy is one of the important approaches to
design round transformations of block ciphers that combine
efficiency and resistance against linear and differential crypt-
analysis. It results in simple and strong security arguments.
However, this approach does not help in designing efficient
diffusion layers (with a suitable number of active S-boxes). In
this respect, the diffusion layers constructed and the method
given in this study aim to provide an alternative structure for
the block ciphers with input size different than 2

𝑘.
In this study, an algebraic method based on state trans-

form matrix (companion matrix) to construct binary matri-
ces with good implementation properties for lightweight
block ciphers and hash functions is given. The emphasis
is given to 𝑛 × 𝑛 binary matrices where 𝑛 ̸= 2

𝑘 and
𝑘 is a positive integer. The proposed method can also be
considered as a generalization and different interpretation
of the methods given in [12, 13] since it works for any 𝑛.
This method uses 4 × 4 finite field Hadamard (FFHadamard)

matrices with the powers of the companion matrix for an
irreducible polynomial over GF(2) of degree 5 and 6 × 6

circulant matrices with the powers of the companion matrix
for an irreducible polynomial over GF(2) of degree 4 to
generate 20 × 20 (involutory and noninvolutory) and 24 × 24

binary matrices (noninvolutory) of branch numbers 8 and
10 with low number of fixed points, respectively. Also, the
binary matrices are constructed to have suitable software and
hardware implementation properties for lightweight block
ciphers. Note that the binary matrices with these sizes have
not been studied in the literature well enough, which may
allow us to design a lightweight block cipher with 80-bit and
96-bit block sizes if thesematrices are usedwith 4-bit S-boxes.

This paper is organized as follows: Section 2 describes the
required mathematical background and an introduction to
the proposed method. In Section 3, the proposed method is
given and examples are provided with good cryptographic
properties. Security assessment of lightweight block cipher
using the proposed diffusion layer is analyzed in Section 4.
Conclusion is given in Section 5. In Appendices A, B, and C
implementation details of given examples are discussed.

2. Preliminaries

In this section, we give the mathematical background and a
view of the proposed method.

Let GF(2𝑚) ≅ GF(2)/ ⟨𝑝(𝑥)⟩ , where 𝑝(𝑥) = 𝑎𝑚𝑥
𝑚

+

⋅ ⋅ ⋅ + 𝑎1𝑥 + 𝑎0 is an irreducible polynomial over GF(2) with
degree𝑚. Let𝐶𝑚 be the companionmatrix for the irreducible
polynomial over GF(2) with degree𝑚. The powers of 𝐶𝑚 can
be considered as the nonzero elements of GF(2𝑚) [18, 19].
Then, the matrix 𝐶𝑚 can be viewed as a polynomial, that is,
𝑀 : 𝑥,𝑀

2
: 𝑥
2
, . . .. This is the core part of the proposed

method. Note that this multiplication is modulo 𝑝(𝑥) and
rank of these matrices is the extension degree𝑚. The identity
matrix can be obtained by 𝐶

2
𝑚

−1

𝑚

𝐶𝑚 = (

0 0 ⋅ ⋅ ⋅ 0 𝑎0

1 0 ⋅ ⋅ ⋅ 0 𝑎1

0 1 ⋅ ⋅ ⋅ 0 𝑎2

.

.

.

.

.

. d
.
.
.

.

.

.

0 0 ⋅ ⋅ ⋅ 1 𝑎𝑚−1

). (1)

In this study we focus on the finite fields GF(24) and
GF(25), where the irreducible polynomials over GF(2) are,
respectively, 𝑥4+𝑥+1 and 𝑥

5
+𝑥
2
+1. Nowwe give an example

on how to obtain the elements of GF(24).

Example 1. Let GF(24) ≅ GF(2)/ ⟨𝑝(𝑥)⟩, where 𝑝(𝑥) = 𝑥
4
+

𝑥 + 1 is the irreducible polynomial over GF(2). Then,
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𝐶4 = (

0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0

) ,𝐶
2

4
= (

0 0 1 0

0 0 1 1

1 0 0 1

0 1 0 0

) , . . . , 𝐶
15

4
= (

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

) . (2)

6 × 6 matrices with the elements of 𝐶𝑖
4
, where 1 ≤ 𝑖 ≤

2
4
− 1, can be transformed to 24 × 24 binary matrices by

substituting the powers of 𝐶4 with their corresponding 4 × 4

binary matrices. Similarly, 4 × 4 matrices with the elements
of 𝐶𝑖
5
, where 1 ≤ 𝑖 ≤ 2

5
− 1, can be transformed to 20 × 20

binary matrices by substituting the powers of 𝐶5 with their
corresponding 5 × 5 binary matrices.

Now we recall some facts on the linear transformations.
The linear transformations of diffusion layers used in most
block ciphers are represented as matrices. Hence, a linear
transformation 𝐴 : ({0, 1}

𝑚
)
𝑛

󳨃→ ({0, 1}
𝑚
)
𝑛 can be defined

as follows:

𝐴 (𝑥) = 𝐴 ⋅ 𝑥
𝑇
= (

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛

𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛

.

.

.

.

.

. d
.
.
.

𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

) ⋅ (

𝑥1

𝑥2

.

.

.

𝑥𝑛

), (3)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑇 and 𝑥𝑖 ∈ {0, 1}

𝑚, 𝑖 = 1, . . . , 𝑛.
Also 𝑛 represents the number of S-boxes in a diffusion layer
𝐴, where the size of each input and output is𝑚-bit [4].

Definition 2 (see [6]). The differential and linear branch
numbers of an 𝑛 × 𝑛 matrix 𝐴 : ({0, 1}

𝑚
)
𝑛
󳨃→ ({0, 1}

𝑚
)
𝑛 are

defined by

𝐵𝑑 (𝐴) = min {𝑤𝑡 (𝑥) + 𝑤𝑡 (𝐴 ⋅ 𝑥
𝑇
) | 𝑥 ∈ ({0, 1}

𝑚
)
𝑛
− {0}} ,

𝐵𝑙 (𝐴) = min {𝑤𝑡 (𝑥) + 𝑤𝑡 (𝐴
𝑇
⋅ 𝑥
𝑇
) | 𝑥 ∈ ({0, 1}

𝑚
)
𝑛
− {0}} ,

(4)

where 𝑤𝑡(𝑥) is the number of nonzero components in 𝑥,
respectively.

Definition 3. Let 𝑛 be a power of 2. An 𝑛 × 𝑛 finite
field Hadamard (FFHadamard) matrix with the elements of
GF(2𝑚) can be given as follows:

had (𝑎1, 𝑎2, . . . , 𝑎𝑛) = (

𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛−1 𝑎𝑛

𝑎2 𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛 𝑎𝑛−1

.

.

.

.

.

. d
.
.
.

.

.

.

𝑎𝑛 𝑎𝑛−1 ⋅ ⋅ ⋅ 𝑎2 𝑎1

). (5)

Remark 4. Note that one can also divide the FFHadamard
matrix into the submatrices. For example, for 4 × 4

FFHadamard matrix, we have had(𝑎1, 𝑎2, 𝑎3, 𝑎4) = (
𝐴 𝐵
𝐵 𝐴

),
where 𝐴 = (

𝑎
1
𝑎
2

𝑎
2
𝑎
1

) and 𝐵 = (
𝑎
3
𝑎
4

𝑎
4
𝑎
3

). The matrices 𝐴 and
𝐵 have Toeplitz matrix properties. We use this observation
while constructing a diffusion layer.

Definition 5. An 𝑛 × 𝑛 circulant matrix with the elements of
GF(2𝑚) can be given as follows:

circ (𝑎1, 𝑎2, . . . , 𝑎𝑛) = (

𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛−1 𝑎𝑛

𝑎𝑛 𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛−2 𝑎𝑛−1

𝑎𝑛−1 𝑎𝑛 ⋅ ⋅ ⋅ 𝑎𝑛−3 𝑎𝑛−2

.

.

.

.

.

. d
.
.
.

.

.

.

𝑎2 𝑎3 ⋅ ⋅ ⋅ 𝑎𝑛 𝑎1

). (6)

Note that Remark 4 is also applicable in this case. In
Lemma 6, the construction of involutory 4 × 4 FFHadamard
matrix is given.

Lemma 6. Let𝐴 be a 4 × 4 FFHadamard matrix with distinct
elements of GF(2𝑚) − {0}. Then 𝐴 is involutory if and only if
∑
4

𝑖=1
𝑎𝑖 = 1.

Proof. The identity matrix satisfies ∑4
𝑖=1

𝑎
2

𝑖
= 1 and ∑

4

𝑖=1
𝑎𝑖 =

1. Since 𝐴 is unitary (𝐴−1 = 𝐴) and symmetric (𝐴 = 𝐴
𝑇
), the

matrix 𝐴 is involutory:

𝐴
2
= (

𝑎1 𝑎2 𝑎3 𝑎4

𝑎2 𝑎1 𝑎4 𝑎3

𝑎3 𝑎4 𝑎1 𝑎2

𝑎4 𝑎3 𝑎2 𝑎1

) ⋅ (

𝑎1 𝑎2 𝑎3 𝑎4

𝑎2 𝑎1 𝑎4 𝑎3

𝑎3 𝑎4 𝑎1 𝑎2

𝑎4 𝑎3 𝑎2 𝑎1

)

=

(

(

(

(

(

(

(

(

(

4

∑

𝑖=1

𝑎
2

𝑖
0 0 0

0

4

∑

𝑖=1

𝑎
2

𝑖
0 0

0 0

4

∑

𝑖=1

𝑎
2

𝑖
0

0 0 0

4

∑

𝑖=1

𝑎
2

𝑖

)

)

)

)

)

)

)

)

)

.

(7)

In this study, 20 × 20 binary matrices are constructed
by using 4 × 4 FFHadamard matrices with the elements
of GF(25) and also 24 × 24 noninvolutory binary matrices
are constructed by using 6 × 6 matrices with the elements
of GF(24). The 20 × 20 binary matrices constructed are
both involutory and noninvolutory with minimum number
of fixed points. Involutory transformations can make the
decryption process the same as the encryption process. Thus
the encryption and decryption can be implemented by the
samemodule andwith equal speeds. However, noninvolutory
transformations constructed in this study are aimed at having
close encryption and decryption speeds. An input block is a
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fixed point of a transformation if the input block equals its
output block. Clearly, in this context, there is no diffusion at
the fixed points since the input blocks at these points are left
intact by the linear transformation. Therefore, if the number
of fixed points in a linear transformation greatly exceeds
the expected number for a random linear transformation,
then this is an indication of poor diffusion of the linear
transformation. Note that the expected number of fixed
points in a random linear transformation is one [5]. Consider
an input block to a linear transformation formed by 𝑚-bit
values in the field GF(2𝑚) and let the linear transformation
matrix be an 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛, where 𝑎𝑖𝑗 ∈ GF(2) or
𝑎𝑖𝑗 ∈ GF(2𝑚) and 𝐼 is an 𝑛×𝑛 identity matrix.Then, the set of
all fixed points for that linear transformation, which can be
represented by a nonsingular matrix 𝐴, can be obtained by
solving the following equation: (𝐴+𝐼) ⋅ 𝑥

𝑇
= 0, where 0 is the

all zero vector of length 𝑛. Hence, the number of fixed points
can be given as

𝐹𝐴 = 2
𝑚(𝑛−rank(𝐴+𝐼))

. (8)

It is obvious that if the matrix (𝐴 + 𝐼) has bigger rank, the
matrix 𝐴 has lower number of fixed points.

Remark 7. The existence of fixed points in the round function
of block ciphers is used as the basis for some cryptographic
attacks and these attacks use fixed points that exist across
one or more rounds [5]. The block ciphers DES, SAFER K,
Blowfish, GOST, DEAL, and KeeLog were previously found
vulnerable to attacks based on the existence of fixed points
[20–23]. For SPN ciphers, the existence of fixed points in a
linear transformation hints at the presence of 1-round self-
iterating differential characteristic. It should be also noted
that not all fixed points are useful in constructing a self-
iterating characteristic.The usefulness of a fixed point, in this
case, depends on its interaction with the subsequent nonlin-
ear transformation. If the input difference is a fixed point,
then the linear transformation will replicate this difference
into the same S-boxes in the next round. In this context, when
designing a block cipher, the linear transformation should be
considered with the S-boxes and self-iterating characteristics
should be searched. The designer should decide on the num-
ber of rounds of the block cipher according to some further
investigations (e.g., the resistance of the linear transformation
against other attacks like impossible differential cryptanalysis
and truncated differential cryptanalysis). To ensure that the
large number of fixed points does not trigger an attack to
the cipher where the construction is used as a building block
depends on the cipher.What we expect is that the cipher itself
should behave like a random permutation. Therefore, if the
cipher itself does not have many fixed points then it would
be almost impossible to exploit the large number of fixed
points of the matrix used in the cipher. Therefore, the other
building blocks of the cipher should not leverage and extend
the fixed points of the matrix to the high level structure of
the cipher. Otherwise the cipher may be vulnerable to some
self-similarity attack such as reflection attacks.

3. The Proposed Method

In this section, we explain our strategy by using the defini-
tions given in Section 2.Then, we give algebraic construction
of 20 × 20 and 24 × 24 binary matrices. The construction
procedure has four main steps.

Step 1. Construct companion (state transform) matrix 𝐶𝑚 for
a given irreducible polynomial 𝑝(𝑥) of degree 𝑚. Note that
𝐶𝑚 is an𝑚 × 𝑚matrix.

Step 2. Choose some integers 𝑠𝑖’s with 1 ≤ 𝑠𝑖 ≤ 2
𝑚

− 1 and
compute the corresponding 𝐶

𝑠
𝑖

𝑚
’s. Note that the selection of

𝑠𝑖’s depends on the Hamming weight of each row of the big
matrix𝐷.

Step 3. Construct 𝐷 by using had(𝐶𝑠1
𝑚
, 𝐶
𝑠
2

𝑚
, . . . , 𝐶

𝑠
ℓ

𝑚
) or

circ(𝐶𝑠1
𝑚
, 𝐶
𝑠
2

𝑚
, . . . , 𝐶

𝑠
ℓ

𝑚
), where ℓ is a positive integer. Choose

matrix𝐷 whose Hamming weight of the each row is as small
as possible. This condition helps us to have low-cost (XOR
friendly) hardware implementations.

Step 4. Check whether the branch and the number of fixed
points are satisfactory.

This algorithm can be easily implemented on a computer.
The results given in this study are obtained by using Magma
Computational Algebra System [24].With the help ofMagma
Computational Algebra System, one can evaluate hundreds of
20 × 20 or 24 × 24 binary matrices in a second.

Remark 8. Note that the diffusion layers proposed in this
study can be implemented by only XOR operations whereas
other diffusion layers like MDS (maximum distance separa-
ble) matricesmay use table look-ups, xtime calls, and so forth
[11]. Thus, performing the proposed diffusion layers gives us
better implementation properties.

3.1. Algebraic Construction of Cryptographically Good 20 × 20

Binary Matrices. The maximum branch number of 𝑛 × 𝑛

binary matrices is equal to the maximum distance of binary
linear [2𝑛, 𝑛] codes. The exact maximum distance for 𝑛 ×

𝑛 (𝑛 ≤ 18) binary matrices is known. For example, the
maximum branch number and also the upper bound for
8 × 8matrices are 5 [4]. 20 × 20 binary matrix with a branch
number 9 is known and the upper bound is 10 in theory. Note
that there is no theoretical bound for the involutory binary
matrices in view of branch number. The method presented
herein is successful for generating 20 × 20 involutory and
noninvolutory binary matrices of branch number 8. Also,
20 × 20 involutory and noninvolutory binary matrices are
constructed such that the rank of 𝐴 + 𝐼 matrix is the highest
achievable rank, which is 10 for 20 × 20 involutory binary
matrices and 20 for 20 × 20 noninvolutory binary matrices.
In Example 11, a 20 × 20 involutory binary matrix (𝐴Binary =

𝐴
−1

Binary) is constructed from a 4 × 4 involutory FFHadamard
matrix 𝐴 that satisfies four restrictions simultaneously such
that

(i) the 4 × 4 matrix 𝐴 should be involutory as given in
Lemma 6,
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(ii) the 20 × 20 binary matrix 𝐴Binary transformed from
the 4× 4 involutory matrix𝐴 should be of differential
and linear branch number 8,

(iii) the 4 × 4 involutory matrix 𝐴 should be chosen such
that the rank of the (𝐴 + 𝐼)matrix should be 2, which
is in fact the highest achievable rank (𝑛/2 for an 𝑛 × 𝑛

involutory matrix). Since the elements of GF(25) are
used to construct the 20 × 20 binary matrix, the rank
of the matrix (𝐴Binary + 𝐼) becomes 10. Thus, if it is
used as 80-bit to 80-bit linear transformation, where
each input element is in GF(24), the binary linear
transformation includes 240 fixed points,

(iv) the elements 4 × 4matrix 𝐴 in GF(25) should be cho-
sen such that each row and columnof the transformed
binary matrix should have the Hamming weight
equal to 7, which provides suitable implementation
properties.

Remark 9. If we want to construct a 20 × 20 binary matrix of
branch number 8 with minimum Hamming weight (in each
row and column), then we need to focus on a binary matrix
which has Hamming weight 7 in each row and column. That
means in random search we should search (𝐶(20, 7))

20
≈ 2
324

binary matrices whereas our search space in the proposed
method is 𝐶(31, 4) = 31465, where 2

5
− 1 = 31 represents

the number of 5 × 5 binary matrices (different elements)
used in the construction and obtained by using the primitive
polynomial 𝑥5+𝑥

2
+1 and 4 represents the first 4 elements in

Hadamard matrix. Therefore, the main idea of the method is
to reduce search space and construct binary matrices of high
branch number.

Remark 10. If one wants to construct an involutory 20 ×

20 binary matrix and uses it with 4-bit S-boxes, then the
minimumnumber of fixed point is 240 since the rank of (𝐷+𝐼)

matrix becomes at most 10 (or at most 𝑛/2 for an 𝑛 × 𝑛

involutory binary matrix). In this respect, this matrix has
as possible the lowest number of fixed points. For example,
the AES includes 216 fixed points though the diffusion layer
of the AES (shiftrows + mixcolumns) is not involutory [5].
Noninvolutory diffusion layers may provide less number of
fixed points as shown in Example 12 (one fixed point).

Example 11. Let

𝐴 = had (𝐶
31

5
, 𝐶
18

5
, 𝐶
3

5
, 𝐶
27

5
) =

(

(

(

𝐶
31

5
𝐶
18

5
𝐶
3

5
𝐶
27

5

𝐶
18

5
𝐶
31

5
𝐶
27

5
𝐶
3

5

𝐶
3

5
𝐶
27

5
𝐶
31

5
𝐶
18

5

𝐶
27

5
𝐶
3

5
𝐶
18

5
𝐶
31

5

)

)

)

.

(9)

be an involutory 4×4 FFHadamardmatrix, which is alsoMDS
matrix over the finite field GF(25) defined by the primitive
polynomial 𝑝(𝑥) = 𝑥

5
+ 𝑥
2
+ 1; that is, the branch number of

the 4 × 4 matrix is 5. It can be transformed into the 20 × 20

binary matrix satisfying the restrictions above as follows:

𝐴Binary =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1

0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0

0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0

0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0

0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0

1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0

1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0

0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1

0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0

0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1

0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1

0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0

0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1

1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0

0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1

1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0

1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0

1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0

0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (10)

Note that 20 × 20 binary matrix, 𝐴Binary given in Example 11,
requires 120 XOR operations in the implementation for
both encryption and decryption. In Example 12, a 20 × 20

noninvolutory binary matrix is constructed from 4 × 4

noninvolutorymatrix 𝐵 that satisfies three restrictions simul-
taneously such that
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(i) the 20 × 20 binary matrix, 𝐵Binary, transformed from
the 4 × 4 noninvolutory matrix 𝐵 should be of
differential and linear branch number 8,

(ii) the rank of 4 × 4 noninvolutory matrix 𝐵 should be
4, which is in fact the highest achievable rank (𝑛 for
𝑛 × 𝑛 matrix). Since the elements of GF(25) are used
to construct the 20 × 20 binary matrix, the rank of
the matrix (𝐵Binary + 𝐼) becomes 20. Therefore, if it is
used as 80-bit to 80-bit linear transformation, where
each input element is in GF(24), the binary linear
transformation includes only one fixed point,

(iii) the elements of 4 × 4 matrix 𝐵 in GF(25) should
be chosen such that the constructed binary matrix
should have suitable implementation properties.

Example 12. Let

𝐵 = had (𝐶
31

5
, 𝐶5, 𝐶

27

5
, 𝐶
9

5
) =

(

(

(

𝐶
31

5
𝐶5 𝐶

27

5
𝐶
9

5

𝐶5 𝐶
31

5
𝐶
9

5
𝐶
27

5

𝐶
27

5
𝐶
9

5
𝐶
31

5
𝐶5

𝐶
9

5
𝐶
27

5
𝐶5 𝐶

31

5

)

)

)

.

(11)

be a noninvolutory 4 × 4 FFHadamard matrix, which is
also MDS matrix over the finite field GF(25) defined by the
primitive polynomial 𝑝(𝑥) = 𝑥

5
+ 𝑥
2
+ 1; that is, the branch

number of the 4 × 4 matrix is 5. It can be transformed into
the 20 × 20 binary matrix satisfying the restrictions above as
follows:

𝐵Binary =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0

0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1

0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1

0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1

1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0

0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0

0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0

1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1

1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1

1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0

0 1 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0

0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0

1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0

1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0

1 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (12)

Note that the 20×20 binarymatrix𝐵Binary given in Example 12
and the inverse of 20 × 20 binary matrix (Appendix A)
require 124 XOR operations and 140 XOR operations in the
implementation for encryption and decryption, respectively.

3.2. Algebraic Construction of Cryptographically Good 24 ×

24 Binary Matrices. The exact maximum distance (upper
bound) and therefore maximum branch number for 24 × 24

binary matrices are 12 [4]. The method presented herein
is successful for generating 24 × 24 noninvolutory binary
matrices of branch number 10. Note that there is no known
24×24 binary matrices of branch number 10 or more. 24×24

noninvolutory binary matrices are constructed such that the
rank of (𝐷 + 𝐼) matrix is as possible as high rank. Also,
when constructing 24 × 24 binary matrices, 6 × 6 circulant
matrices with the elements of GF(24) are used. In Example 13,
a 24 × 4 noninvolutory binary matrix is constructed from
a 6 × 6 circulant matrix 𝐷 that satisfies three restrictions
simultaneously such that

(i) the 24 × 24 binary matrix, 𝐷Binary, transformed from
the 6 × 6 circulant matrix 𝐶 should be of differential
and linear branch number 10,

(ii) the 6 × 6 circulant matrix 𝐶 should be chosen such
that the rank of the (𝐷 + 𝐼)matrix should be 5, which
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is in fact the highest achievable rank satisfying the
previous restriction. Since the elements of GF(24) are
used to construct the 24 × 24 binary matrix, the rank
of the matrix (𝐷Binary + 𝐼) becomes 20. Thus, if it is
used as 96-bit to 96-bit linear transformation, where
each input element is in GF(24), the binary linear
transformation includes 216 fixed points.

(iii) The elements of 6 × 6 matrix 𝐷 in GF(24) should
be chosen such that the constructed binary matrix
should have suitable implementation properties.

Example 13. Let

𝐷 = circ (𝐶7
4
, 𝐶
15

4
, 𝐶
3

4
, 𝐶
14

4
, 𝐶
11

4
, 𝐶
2

4
)

=

(

(

(

(

(

(

(

(

(

(

𝐶
7

4
𝐶
15

4
𝐶
3

4
𝐶
14

4
𝐶
11

4
𝐶
2

4

𝐶
2

4
𝐶
7

4
𝐶
15

4
𝐶
3

4
𝐶
14

4
𝐶
11

4

𝐶
11

4
𝐶
2

4
𝐶
7

4
𝐶
15

4
𝐶
3

4
𝐶
14

4

𝐶
14

4
𝐶
11

4
𝐶
2

4
𝐶
7

4
𝐶
15

4
𝐶
3

4

𝐶
3

4
𝐶
14

4
𝐶
11

4
𝐶
2

4
𝐶
7

4
𝐶
15

4

𝐶
15

4
𝐶
3

4
𝐶
14

4
𝐶
11

4
𝐶
2

4
𝐶
7

4

)

)

)

)

)

)

)

)

)

)

(13)

be a 6 × 6 circulant matrix, which is of branch number 6 over
finite fieldGF(24) defined by the primitive polynomial𝑝(𝑥) =
𝑥
4
+𝑥+1. It can be transformed into the 24×24 binarymatrix

satisfying the restrictions above as follows:

𝐷Binary =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0

1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1

0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1

1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0

0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1

0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0

1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0

0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1

0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0

1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1

1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0

1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0

0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0

0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1

1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1

0 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0

0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0

0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0

1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 1

0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1

0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1

0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (14)

Note that in a straight coding the 24 × 24 binary matrix,
𝐷Binary given in Example 13, requires 240 XOR operations in
the implementation for both encryption and decryption.The
required number of XOR operations can be reduced to 186 by
adding 6 temporary variables to the implementation for both
encryption and decryption (Appendices B and C).

4. Security Assessment of an Assumed
Lightweight Block Cipher with 80-Bit or
96-Bit Block Size

In this section, we focus on the security analysis of the
assumed block cipher using the proposed linear transfor-
mation. A differentially active S-box is defined as an S-box

given a nonzero input difference, and a linearly active S-box
is defined as an S-box given a nonzero output mask. In this
study, S-boxes are assumed to be bijective mappings defined
on GF(2𝑚) and round keys are assumed to be independent
and random uniform. Thus the number of active S-boxes is
not affected by the key addition layer. The branch number of
a diffusion layer is the minimum number of active S-boxes
in the 2-round SPN (substitution permutation network). We
follow the method defined in [25, 26]. Let 𝑝𝐷 and 𝑞𝐿 be the
themaximumprobabilities of the differential and linear char-
acteristic for 2𝑟-round SPN, respectively. Let 𝑝2𝑟

𝐷
≤ 𝑝
𝑟⋅𝛽 and

𝑞
2𝑟

𝐿
≤ 𝑞
𝑟⋅𝛽, where𝑝, 𝑞, and𝛽denote themaximumdifferential

probability for the S-box, the maximum linear probability for
the S-box, and branch number for the diffusion layer used
in a block cipher, respectively. In this study, an SPN structure
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consisting of a number of rounds of the same 20 4-bit S-boxes
connected by a 20 × 20 binary matrix is considered for 80-bit
block size. Figure 1 shows one round function of an assumed
block cipher. Note that the maximum differential and linear
probabilities of the S-box are assumed to be 2

−2 which is
the best value for 4 × 4 S-boxes [27]. Then, the maximum
probabilities of the differential, 𝑝𝐷, and linear characteristic,
𝑞𝐿, for 2𝑟-round SPN are as follows:

𝑝
2𝑟

𝐷
≤ (2
−2
)

𝑟⋅𝛽
𝐴

, 𝑞
2𝑟

𝐿
≤ (2
−2
)

𝑟⋅𝛽
𝐴

, (15)

where𝛽𝐴 denotes the branch number of 20×20 binarymatrix
assumed for the lightweight block cipher demonstrated in
Figure 1. The maximum differential and linear probabilities
of 2-round SPN are bounded by (2

−2
)
1⋅8

= 2
−16 since the

branch number of the binary matrix is assumed to be 8 and
thus the number ofminimum active S-box is 8 in the 2-round
SPN. In Table 1, the lower bounds for the number of active
S-boxes and the upper bounds for the probabilities for linear
and differential probabilities in each round size are computed
for the assumed block cipher of 80-bit and 96-bit block sizes.

In this context, the minimum number of rounds needed
for the lightweight block cipher with 80-bit block size to
be secure against differential and linear cryptanalysis is 10
because the maximum differential and linear probabilities
of 10-round SPN are bounded by (2

−2
)
5⋅8

= 2
−80

≤ 2
−80.

Similarly, if an SPN structure consisting of a number of
rounds of the same 24 4-bit S-boxes connected by a 24 ×

24 binary matrix is considered for 96-bit block size, then
the minimum number of rounds needed for the lightweight
block cipher to be secure against differential and linear
cryptanalysis is again obtained as 10 because the maximum

differential and linear probabilities of 10-round SPN are
bounded by (2

−2
)
5⋅10

= 2
−100

≤ 2
−96.

5. Conclusion

In this study, an algebraic method based on state transform
matrix (companion matrix) to construct 𝑛 × 𝑛 binary matri-
ces with good implementation properties for lightweight
block ciphers and hash functions is given. The proposed
method can also be considered as a generalization and
different interpretation of the methods given in [12, 13]
since it works for any 𝑛. For 20 × 20 and 24 × 24 binary
matrices, examples are provided with good implementation
properties. The binary matrices are also constructed to have
suitable software and hardware implementation properties
for lightweight block ciphers. In other words, by using
the proposed method, the matrices have smaller hardware
implementations in view of the required number of XOR
gates. Note that the binary matrices with these sizes have not
been studied in the literature well enough, which may allow
us to design a lightweight block cipher with 80-bit and 96-
bit block sizes if these matrices are used with 4-bit S-boxes.
20 × 20 binary matrix given in Example 12 has only one fixed
point and branch number 8.

Appendices

A. Inverse of the 20×20 Binary Matrix Given in
Example 12

The inverse of the 20 × 20 binary matrix (𝐵−1Binary) given
in Example 12 can be constructed by transforming 4 × 4

FFHadamard matrix had(𝐶2
5
, 𝐶
3

5
, 𝐶
29

5
, 𝐶
11

5
) into the binary

form as given below:

𝐵
−1

Binary =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1

0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1

0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0

0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1

1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0

0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0

1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0

0 1 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1

1 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0

0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1

1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0

1 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1

1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0

0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1

0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (A.1)
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(S-box layer)

Key addition layer

(diffusion layer)

S1 S2 S20· · ·

20 × 20 binary matrix

Figure 1: One round function of an assumed lightweight block cipher.

Table 1:The lower bounds for the number of active S-boxes and the upper bounds for the linear and differential probabilities for the assumed
block cipher of 80-bit and 96-bit block size.

Round The lower bounds for the number of active S-boxes The upper bounds for the linear and differential probabilities
80-bit block cipher 96-bit block cipher 80-bit block cipher 96-bit block cipher

2 8 10 2
−16

2
−20

3 9 11 2
−18

2
−22

4 16 20 2
−32

2
−40

5 17 21 2
−34

2
−42

6 24 30 2
−48

2
−60

7 25 31 2
−50

2
−62

8 32 40 2
−64

2
−80

9 33 41 2
−66

2
−82

10 40 50 2
−80

2
−100

11 41 51 2
−82

2
−102

12 48 60 2
−96

2
−120

B. Implementation of the 24×24 Binary Matrix
Given in Example 13

If the 24 × 24 binary matrix given in Example 13 is imple-
mented with 4-bit XORs, then 𝐷Binary is represented by 4-
bit XORs of binary vectors as follows: 𝐷Binary ⋅ 𝑥 = 𝑦,
where 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥31)

𝑇 and 𝑦 = (𝑦0, 𝑦1, . . . , 𝑦31)
𝑇 with

𝑥𝑖, 𝑦𝑖 ∈ GF(24), 𝑖 = 0, 1, . . . , 31. Note also that 𝑇0, 𝑇1, . . . , 𝑇5
are temporary variables used to reduce the number of XOR
operations from 240 XOR to 186 XOR. Then,

𝑇0 = 𝑥3 ⊕ 𝑥4 ⊕ 𝑥13 ⊕ 𝑥18,

𝑇1 = 𝑥0 ⊕ 𝑥9 ⊕ 𝑥14 ⊕ 𝑥23,

𝑇2 = 𝑥1 ⊕ 𝑥6 ⊕ 𝑥15 ⊕ 𝑥16,

𝑇3 = 𝑥2 ⊕ 𝑥11 ⊕ 𝑥12 ⊕ 𝑥21,

𝑇4 = 𝑥7 ⊕ 𝑥8 ⊕ 𝑥17 ⊕ 𝑥22,

𝑇5 = 𝑥5 ⊕ 𝑥10 ⊕ 𝑥19 ⊕ 𝑥20,

𝑦0 = 𝑇0 ⊕ 𝑥0 ⊕ 𝑥1 ⊕ 𝑥9 ⊕ 𝑥12 ⊕ 𝑥17 ⊕ 𝑥19 ⊕ 𝑥22,

𝑦1 = 𝑇1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥5 ⊕ 𝑥10 ⊕ 𝑥16 ⊕ 𝑥17 ⊕ 𝑥22,

𝑦2 = 𝑇2 ⊕ 𝑥3 ⊕ 𝑥10 ⊕ 𝑥11 ⊕ 𝑥17 ⊕ 𝑥18 ⊕ 𝑥20 ⊕ 𝑥23,

𝑦3 = 𝑇3 ⊕ 𝑥0 ⊕ 𝑥7 ⊕ 𝑥8 ⊕ 𝑥16 ⊕ 𝑥17 ⊕ 𝑥18 ⊕ 𝑥19,

𝑦4 = 𝑇4 ⊕ 𝑥2 ⊕ 𝑥4 ⊕ 𝑥5 ⊕ 𝑥13 ⊕ 𝑥16 ⊕ 𝑥21 ⊕ 𝑥23,

𝑦5 = 𝑇0 ⊕ 𝑥2 ⊕ 𝑥6 ⊕ 𝑥7 ⊕ 𝑥9 ⊕ 𝑥14 ⊕ 𝑥20 ⊕ 𝑥21,

𝑦6 = 𝑇5 ⊕ 𝑥0 ⊕ 𝑥3 ⊕ 𝑥7 ⊕ 𝑥14 ⊕ 𝑥15 ⊕ 𝑥21 ⊕ 𝑥22,

𝑦7 = 𝑇2 ⊕ 𝑥4 ⊕ 𝑥11 ⊕ 𝑥12 ⊕ 𝑥20 ⊕ 𝑥21 ⊕ 𝑥22 ⊕ 𝑥23,

𝑦8 = 𝑇3 ⊕ 𝑥1 ⊕ 𝑥3 ⊕ 𝑥6 ⊕ 𝑥8 ⊕ 𝑥9 ⊕ 𝑥17 ⊕ 𝑥20,

𝑦9 = 𝑇4 ⊕ 𝑥0 ⊕ 𝑥1 ⊕ 𝑥6 ⊕ 𝑥10 ⊕ 𝑥11 ⊕ 𝑥13 ⊕ 𝑥18,
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𝑦10 = 𝑇1 ⊕ 𝑥1 ⊕ 𝑥2 ⊕ 𝑥4 ⊕ 𝑥7 ⊕ 𝑥11 ⊕ 𝑥18 ⊕ 𝑥19,

𝑦11 = 𝑇5 ⊕ 𝑥0 ⊕ 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥8 ⊕ 𝑥15 ⊕ 𝑥16,

𝑦12 = 𝑇2 ⊕ 𝑥0 ⊕ 𝑥5 ⊕ 𝑥7 ⊕ 𝑥10 ⊕ 𝑥12 ⊕ 𝑥13 ⊕ 𝑥21,

𝑦13 = 𝑇3 ⊕ 𝑥4 ⊕ 𝑥5 ⊕ 𝑥10 ⊕ 𝑥14 ⊕ 𝑥15 ⊕ 𝑥17 ⊕ 𝑥22,

𝑦14 = 𝑇0 ⊕ 𝑥5 ⊕ 𝑥6 ⊕ 𝑥8 ⊕ 𝑥11 ⊕ 𝑥15 ⊕ 𝑥22 ⊕ 𝑥23,

𝑦15 = 𝑇1 ⊕ 𝑥4 ⊕ 𝑥5 ⊕ 𝑥6 ⊕ 𝑥7 ⊕ 𝑥12 ⊕ 𝑥19 ⊕ 𝑥20,

𝑦16 = 𝑇5 ⊕ 𝑥1 ⊕ 𝑥4 ⊕ 𝑥9 ⊕ 𝑥11 ⊕ 𝑥14 ⊕ 𝑥16 ⊕ 𝑥17,

𝑦17 = 𝑇2 ⊕ 𝑥2 ⊕ 𝑥8 ⊕ 𝑥9 ⊕ 𝑥14 ⊕ 𝑥18 ⊕ 𝑥19 ⊕ 𝑥21,

𝑦18 = 𝑇4 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥9 ⊕ 𝑥10 ⊕ 𝑥12 ⊕ 𝑥15 ⊕ 𝑥19,

𝑦19 = 𝑇0 ⊕ 𝑥0 ⊕ 𝑥8 ⊕ 𝑥9 ⊕ 𝑥10 ⊕ 𝑥11 ⊕ 𝑥16 ⊕ 𝑥23,

𝑦20 = 𝑇1 ⊕ 𝑥5 ⊕ 𝑥8 ⊕ 𝑥13 ⊕ 𝑥15 ⊕ 𝑥18 ⊕ 𝑥20 ⊕ 𝑥21,

𝑦21 = 𝑇5 ⊕ 𝑥1 ⊕ 𝑥6 ⊕ 𝑥12 ⊕ 𝑥13 ⊕ 𝑥18 ⊕ 𝑥22 ⊕ 𝑥23,

𝑦22 = 𝑇3 ⊕ 𝑥6 ⊕ 𝑥7 ⊕ 𝑥13 ⊕ 𝑥14 ⊕ 𝑥16 ⊕ 𝑥19 ⊕ 𝑥23,

𝑦23 = 𝑇4 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝑥12 ⊕ 𝑥13 ⊕ 𝑥14 ⊕ 𝑥15 ⊕ 𝑥20.

(B.1)

C. Inverse of 24 × 24 Binary Matrix Given in
Example 13 and Implementation Details

The inverse of the 24 × 24 binary matrix given in Example 13
is constructed from the 6 × 6 circulant matrix 𝐷

−1
=

circ(𝐶11
4
, 𝐶
14

4
, 𝐶
14

4
, 𝐶
2

4
, 𝐶
9

4
, 𝐶
15

4
) as follows:

𝐷
−1

Binary =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0

1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0

1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0

1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1

1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1

0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1

0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1

0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1

0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0

1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1

0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1

1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0

0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0

1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1

0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0

1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0

0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0

0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 1

1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0

1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1

0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0

0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0

1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (C.1)

Let 𝐷−1Binary ⋅ 𝑥 = 𝑦, where 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥31)
𝑇 and 𝑦 =

(𝑦0, 𝑦1, . . . , 𝑦31)
𝑇 with 𝑥𝑖, 𝑦𝑖 ∈ GF(24), 𝑖 = 0, 1, . . . , 31. Note

also that𝑇0, 𝑇1, . . . , 𝑇5 are temporary variables used to reduce
the number of XOR operations from 240 XORs to 186 XORs.
Then,

𝑇0 = 𝑥2 ⊕ 𝑥3 ⊕ 𝑥8 ⊕ 𝑥9,

𝑇1 = 𝑥0 ⊕ 𝑥1 ⊕ 𝑥18 ⊕ 𝑥19,

𝑇2 = 𝑥5 ⊕ 𝑥6 ⊕ 𝑥7 ⊕ 𝑥12,

𝑇3 = 𝑥4 ⊕ 𝑥21 ⊕ 𝑥22 ⊕ 𝑥23,

𝑇4 = 𝑥10 ⊕ 𝑥11 ⊕ 𝑥16 ⊕ 𝑥17,

𝑇5 = 𝑥13 ⊕ 𝑥14 ⊕ 𝑥15 ⊕ 𝑥20,

𝑦0 = 𝑇0 ⊕ 𝑥1 ⊕ 𝑥4 ⊕ 𝑥5 ⊕ 𝑥14 ⊕ 𝑥17 ⊕ 𝑥19 ⊕ 𝑥20,

𝑦1 = 𝑇1 ⊕ 𝑥6 ⊕ 𝑥10 ⊕ 𝑥14 ⊕ 𝑥15 ⊕ 𝑥16 ⊕ 𝑥17 ⊕ 𝑥21,

𝑦2 = 𝑇1 ⊕ 𝑥2 ⊕ 𝑥7 ⊕ 𝑥11 ⊕ 𝑥12 ⊕ 𝑥15 ⊕ 𝑥17 ⊕ 𝑥22,

𝑦3 = 𝑇1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝑥8 ⊕ 𝑥13 ⊕ 𝑥16 ⊕ 𝑥23,

𝑦4 = 𝑇2 ⊕ 𝑥0 ⊕ 𝑥8 ⊕ 𝑥9 ⊕ 𝑥13 ⊕ 𝑥18 ⊕ 𝑥21 ⊕ 𝑥23,

𝑦5 = 𝑇3 ⊕ 𝑥1 ⊕ 𝑥5 ⊕ 𝑥10 ⊕ 𝑥14 ⊕ 𝑥18 ⊕ 𝑥19 ⊕ 𝑥20,

𝑦6 = 𝑇3 ⊕ 𝑥2 ⊕ 𝑥5 ⊕ 𝑥6 ⊕ 𝑥11 ⊕ 𝑥15 ⊕ 𝑥16 ⊕ 𝑥19,
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𝑦7 = 𝑇2 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝑥8 ⊕ 𝑥17 ⊕ 𝑥20 ⊕ 𝑥22 ⊕ 𝑥23,

𝑦8 = 𝑇4 ⊕ 𝑥1 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝑥9 ⊕ 𝑥12 ⊕ 𝑥13 ⊕ 𝑥22,

𝑦9 = 𝑇0 ⊕ 𝑥0 ⊕ 𝑥1 ⊕ 𝑥5 ⊕ 𝑥14 ⊕ 𝑥18 ⊕ 𝑥22 ⊕ 𝑥23,

𝑦10 = 𝑇0 ⊕ 𝑥1 ⊕ 𝑥6 ⊕ 𝑥10 ⊕ 𝑥15 ⊕ 𝑥19 ⊕ 𝑥20 ⊕ 𝑥23,

𝑦11 = 𝑇0 ⊕ 𝑥0 ⊕ 𝑥7 ⊕ 𝑥10 ⊕ 𝑥11 ⊕ 𝑥12 ⊕ 𝑥16 ⊕ 𝑥21,

𝑦12 = 𝑇5 ⊕ 𝑥2 ⊕ 𝑥5 ⊕ 𝑥7 ⊕ 𝑥8 ⊕ 𝑥16 ⊕ 𝑥17 ⊕ 𝑥21,

𝑦13 = 𝑇2 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝑥9 ⊕ 𝑥13 ⊕ 𝑥18 ⊕ 𝑥22,

𝑦14 = 𝑇2 ⊕ 𝑥0 ⊕ 𝑥3 ⊕ 𝑥10 ⊕ 𝑥13 ⊕ 𝑥14 ⊕ 𝑥19 ⊕ 𝑥23,

𝑦15 = 𝑇5 ⊕ 𝑥1 ⊕ 𝑥4 ⊕ 𝑥6 ⊕ 𝑥7 ⊕ 𝑥11 ⊕ 𝑥12 ⊕ 𝑥16,

𝑦16 = 𝑇1 ⊕ 𝑥6 ⊕ 𝑥9 ⊕ 𝑥11 ⊕ 𝑥12 ⊕ 𝑥17 ⊕ 𝑥20 ⊕ 𝑥21,

𝑦17 = 𝑇4 ⊕ 𝑥2 ⊕ 𝑥6 ⊕ 𝑥7 ⊕ 𝑥8 ⊕ 𝑥9 ⊕ 𝑥13 ⊕ 𝑥22,

𝑦18 = 𝑇4 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝑥7 ⊕ 𝑥9 ⊕ 𝑥14 ⊕ 𝑥18 ⊕ 𝑥23,

𝑦19 = 𝑇4 ⊕ 𝑥0 ⊕ 𝑥5 ⊕ 𝑥8 ⊕ 𝑥15 ⊕ 𝑥18 ⊕ 𝑥19 ⊕ 𝑥20,

𝑦20 = 𝑇3 ⊕ 𝑥0 ⊕ 𝑥1 ⊕ 𝑥5 ⊕ 𝑥10 ⊕ 𝑥13 ⊕ 𝑥15 ⊕ 𝑥16,

𝑦21 = 𝑇5 ⊕ 𝑥2 ⊕ 𝑥6 ⊕ 𝑥10 ⊕ 𝑥11 ⊕ 𝑥12 ⊕ 𝑥17 ⊕ 𝑥21,

𝑦22 = 𝑇5 ⊕ 𝑥3 ⊕ 𝑥7 ⊕ 𝑥8 ⊕ 𝑥11 ⊕ 𝑥18 ⊕ 𝑥21 ⊕ 𝑥22,

𝑦23 = 𝑇3 ⊕ 𝑥0 ⊕ 𝑥9 ⊕ 𝑥12 ⊕ 𝑥14 ⊕ 𝑥15 ⊕ 𝑥19 ⊕ 𝑥20.

(C.2)
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