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Abstract 

The primary purpose of this paper is to classify real quadratic fields Q(√d) which 

include the form of specific continued fraction expansion of integral basis element 𝑤𝑑 for 

arbitrary period length ℓ = ℓ(𝑑) where d ≡ 2,3(mod4) is a square free positive integers. 

Furthermore, the present paper deals with determining new certain parametric 

formulas of fundamental unit   12  dut ddd  and Yokoi’s d-invariants 
dn ,

dm for 

such real quadratic fields. All results are also supported by several numerical tabular forms. 

Key Words: Quadratic Fields, Continued Fractions, Fundamental Units. 

 

2010 AMS Subject Classification: 11R11, 11A55, 11R27. 

 

Özet 

Bu makalenin asıl amacı, d ≡ 2,3(mod4) kare çarpansız pozitif tamsayılar olmak 

üzere keyfi ℓ = ℓ(𝑑) periyod uzunluğu için tamlık taban elemanı olan 𝑤𝑑 nin özel bir sürekli 

kesre açılımındaki formu içeren Q(√d) reel kuadratik sayı cisimlerini sınıflandırmaktır. 

Ayrıca bu çalışma, ilgili reel kuadratik sayı cisimleri için Yokoi’nin d-invaryantları 

olan  
dn ,

dm ile   12  dut ddd  temel biriminin kesin parametrik formüllerinin 

belirlenmesi ile ilgilenmektedir. Tüm sonuçlar bir takım nümerik tablolar ile de 

desteklenmektedir. 

 

Anahtar Kelimeler: Kuadratik Cisimler, Sürekli Kesirler, Temel Birimler. 
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1. INTRODUCTION 

    Quadratic fields have applications in different areas of mathematics such as quadratic 

forms, algebraic geometry, diophantine equations, algebraic number theory, and even 

cryptography. 

The Unit Theorem for real quadratic fields says that every unit in the integer ring of a 

quadratic field is given in terms of the fundamental unit of the quadratic field. Thus, 

determining the fundamental units of quadratic fields is of great importance. 

   Let 𝑘 = 𝑄(√𝑑) be a real quadratic number field where 𝑑 > 0 is a positive square free 

integer. Integral basis element is denoted by 
dw d = [ 𝑎0;  𝑎1, 𝑎2, … ,  𝑎ℓ(d)−1, 2𝑎0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ] and 

ℓ(d) is the period length in simple continued fraction expansion  of algebraic integer 
dw  for 

𝑑 ≡ 2,3(𝑚𝑜𝑑4). The fundamental unit d  of real quadratic number field is also denoted by 

  12  dut ddd  where 𝑁 ( d ) = (−1)ℓ(d). 

Furthermore, Yokoi’s invariants are expressed by  𝑚𝑑 = ⟦
𝑢𝑑
2

𝑡𝑑
⟧ and 𝑛𝑑 = ⟦

𝑡𝑑

𝑢𝑑
2⟧ where 

⟦𝑥⟧ represents the greatest integer not greater than 𝑥. The sequence {𝑌𝑛} is also special 

sequence which will be defined in Section 2. 

By using coefficients of fundamental unit  H.Yokoi defined two significant invariants 

such as  𝑚𝑑, 𝑛𝑑  for class number problem and the solutions of Pell equation in [9].  

In [7], Tomita described explicitly form of the fundamental units of the real quadratic fields  

by using   Fibonacci sequence and continued fraction. He also gave some results for the 

continued fraction expansion of 𝑤𝑑  where 𝑑 ≡ 1(𝑚𝑜𝑑4) for ℓ(d) = 3 in [6].       

Determining of some certain fundamental units   12  dut ddd  of 𝑘 =

𝑄(√𝑑) was studied by R.Sasaki and R.A.Mollin  ([4], [1]). Moreover, please see [3],[5] and 

[8] for more details about continued fraction expansions. 

We will investigate the continued fraction expansions which have partial quotients 

elements as 5s (except the last digit of the period, which is always 2⟦√𝑑⟧ for 
dw d ) with a 

given period length. Although there are infinitely many values of 𝑑 having all 5s in the 

symmetric part of period of integral basis element, we will classify them according to 
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arbitrary period length. 

We will also determine the general forms of fundamental units 𝜀𝑑 and 
dd ut ,  

coefficents of fundamental units   12  dut ddd  in the terms of {𝑌𝑛} as new 

formulizations which have been unknown yet for such real quadratic fields. By using results, 

the fundamental unit, continued fraction expansions and Yokoi’s invariants will be  calculated 

more easily for such 𝑄(√𝑑). 

  

2. PRELIMINARIES 

          We need following definitions and lemmas which will be used in our main results for 

the  section 3. 

Definition 2.1. {𝑌𝑖} is said to be a sequence defined by the recurrence relation 

𝑌𝑖 = 5𝑌𝑖−1 + 𝑌𝑖−2 

with seed values  𝑌0 = 0  and  𝑌1 = 1.  We can calculate some values of the terms of the 

sequence as follows: 

𝑌2 = 5𝑌1 + 𝑌0 = 5 , 𝑌3 = 5𝑌2 + 𝑌1 = 25 + 1 = 26 , 𝑌4 = 5𝑌3 + 𝑌2 = 130 + 5 = 135, 

𝑌5 = 5𝑌4 + 𝑌3 = 5.135 + 26 = 701 , 𝑌6 = 5𝑌5 + 𝑌4 = 3640 , 𝑌7 = 18901 , 𝑌8 = 98145 , 

𝑌9 = 509626 , 𝑌10 = 2646275 ,𝑌11 = 13741001 , 𝑌12 = 71351280 , 𝑌13 = 370497401 , 

…  This sequence plays an important role in this paper to describe our lemmas and main 

results. 

Lemma 2.1. For a square free positive integer 𝑑 congruent to 2,3 modulo 4, we put  𝑤𝑑 = √𝑑 

, 𝑎0 = ⟦√𝑑⟧ into the 𝑤𝑅 = 𝑎0 + 𝑤𝑑. Then 𝑤𝑑 ∉ 𝑅(𝑑), but 𝑤𝑅 ∈ 𝑅 (𝑑) holds.  

Moreover, for the period 𝑙 = 𝑙(𝑑) of 𝑤𝑅, we get 

𝑤𝑅 = [  2𝑎0, 𝑎1, 𝑎2, … ,  𝑎𝑙(𝑑)−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ]   and  𝑤𝑑 = [𝑎0;  𝑎1, 𝑎2, … ,  𝑎𝑙(𝑑)−1, 2𝑎0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ].  

Furthermore, let 𝑤𝑅 =
𝑤𝑅𝑃𝑙+𝑃𝑙−1 

𝑤𝑅𝑄𝑙+𝑄𝑙−1 
= [  2𝑎0, 𝑎1, 𝑎2, … ,  𝑎𝑙(𝑑)−1, 𝑤𝑅] be a modular 

automorphism of 𝑤𝑅. Then the fundamental unit d  of 𝑄(√𝑑) is given by the following 

formula: 

0 ( ) ( ) 1( ) 1
2

d d
d l d l d

t u d
a d Q Q 


      

0 ( ) ( ) 12 . 2d l d l dt a Q Q     and  )(2 dld Qu   

where iQ  is determined by 1,0 10  QQ  and 11   iiii QQaQ , (𝑖 ≥ 1). 

https://en.wikipedia.org/wiki/Recurrence_relation
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Proof. Proof is omitted in [6]. 

Lemma 2.2. Let 𝑑 ≡ 2,3(𝑚𝑜𝑑4)  be the square free positive integer and 𝑤𝑑 has got partial 

constant elements repeated 5s in the case of period 𝑙 = 𝑙(𝑑). If  𝑎0 = ⟦√𝑑⟧  denote the integer 

part of 𝑤𝑑  = √𝑑  for 𝑑 ≡ 2,3(𝑚𝑜𝑑4), then we have continued fraction expansion 

𝑤𝑑 = √𝑑 = [ 𝑎0;  𝑎1,  𝑎2, … ,  𝑎ℓ(d)−1,  𝑎ℓ(d)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ] = [ 𝑎0; 5,5, … ,5, 2𝑎0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ] 

for quadratic irrational numbers and 𝑤𝑅 =  𝑎0 + √𝑑 =  𝑎0 + [ 𝑎0; 5,5, … ,5, 2𝑎0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ] =

[ 2𝑎0, 5, , … ,5̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ] for reduced quadratic irrational numbers. 

Furthermore, 𝐴𝑘 = 𝑎0𝑌𝑘+1 + 𝑌𝑘 and  𝐵𝑘 = 𝑌𝑘+1 are determined in the continued fraction 

expansions where {𝐴𝑘} and {𝐵𝑘} are two sequences defined by : 

𝐴−2 = 0   , 𝐴−1 = 1   ,   1 2k k k kA a A A           (for 0 1k l    ) 

𝐵−2 = 1  , 𝐵−1 = 0   ,  1 2k k k kB a B B            (for 0 1k l    ) 

and   

2

0 0 1 22 3l l l lA a Y a Y Y      ( for 𝑘 = 𝑙(𝑑) ) 

      0 12l l lB a Y Y              ( for 𝑘 = 𝑙(𝑑) ) 

where 𝑙 = 𝑙(𝑑) is period length of 𝑤𝑑 = √𝑑. Also, 𝐶𝑗 =
𝐴𝑗
𝐵𝑗
⁄   is the  𝑗𝑡ℎ convergent in the 

continued fraction expansion of √𝑑. 

Moreover, in the continued fraction [𝑏1, 𝑏2, 𝑏3… , 𝑏n, … ] = [ 2𝑎0, 5, 5, … ,5, … ],  

𝑃𝑗 = 2 𝑎0𝑌𝑗 + 𝑌𝑗−1 and  𝑄𝑗 = 𝑌𝑗  are obtained where {𝑃𝑗} and {𝑄𝑗} are two sequences defined 

by 

𝑃−1 = 0, 𝑃0 = 1, 1 1 1j j j jP b P P       

𝑄−1 = 1, 𝑄0 = 0 ,  1 1 1j j j jQ b Q Q     

for   0j  .   
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Proof. We can prove by using mathematical induction. Using the following table which  

 

 

𝒌 

 

-2 

 

-1 

 

0 

 

1 

 

2 

 

3 

 

4 
 

5 

 

𝒂𝒌 

  

 

 

𝑎0 

 

5 

 

5 

 

5 

 

5 
 

… 

 

𝑨𝒌 

 

0 

 

1 

( 𝑎0) 
 𝑎0𝒀𝟏 + 𝒀𝟎 

(𝟓𝑎0 + 𝟏) 
 𝑎0𝒀𝟐 + 𝒀𝟏 

(𝟐𝟔 𝑎0 + 𝟓) 
 𝑎0𝒀𝟑 + 𝒀𝟐 

(𝟏𝟑𝟓 𝑎0 + 𝟐𝟔) 
 𝑎0𝒀𝟒 + 𝒀𝟑 

(701 𝑎0 + 135) 
𝑎0𝒀𝟓 + 𝒀𝟒 

 

… 

 

𝑩𝒌 

 

1 

𝟎 

𝒀𝟎 

𝟏 

𝒀𝟏 

𝟓 

𝒀𝟐 

𝟐𝟔 

𝒀𝟑 

𝟏𝟑𝟓 

𝒀𝟒 

701 

𝒀𝟓 
 

… 

Table 2.1.  

(Convergent of [ 𝑎0; 5,5, … ,5, 2𝑎0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ] for 𝑙 = 𝑙(𝑑)) 

includes values of 𝐴𝑘, 𝐵𝑘 and 𝑎𝑘, we can easily say that this is true for 𝑘 = 0. 

Now, we assume that the result true for 𝑘 < 𝑖. Using the defined relations for {𝑌𝑖} sequence, 

we obtained (𝑎𝑖 = 5 for 1≤ 𝑖 ≤ 𝑙 − 1) 

1 1 1k k k kA a A A     = 5(𝑎0𝑌𝑘+1 + 𝑌𝑘) + (𝑎0𝑌𝑘 + 𝑌𝑘−1) 

                                  = 𝑎0(5𝑌𝑘+1 + 𝑌𝑘) + (5𝑌𝑘 + 𝑌𝑘−1) 

                                  = 𝑎0𝑌𝑘+2 + 𝑌𝑘+1 

1 1 1k k k kB a B B    = 5𝑌𝑘+1 + 𝑌𝑘= 𝑌𝑘+2 

 

Moreover, since 𝑎𝑙 = 2𝑎0 we get  the following result : 

2

0 0 1 22 3l l l lA a Y a Y Y     

0 12l l lB a Y Y       ( for 𝑘 = 𝑙(𝑑) ) 

Furthermore, in the continued fraction  [𝑏1, 𝑏2, 𝑏3… , 𝑏n, … ] = [ 2𝑎0, 5, 5, … ,5, … ],we have 

following table: 

 

𝒋 
 

-1 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

𝒃𝒋 
  

 

 

2 𝑎0 

 

5 

 

5 

 

5 

 

… 

 

𝑷𝒋 
 

0 

 

1 

(𝟐 𝑎0) 
𝟐 𝑎0𝒀𝟏 + 𝒀𝟎 

(𝟏𝟎 𝑎0 + 𝟏) 
𝟐 𝑎0𝒀𝟐 + 𝒀𝟏 

(𝟓𝟐 𝑎0 + 𝟓) 
𝟐 𝑎0𝒀𝟑 + 𝒀𝟐 

(𝟐𝟕𝟎 𝑎0 + 𝟐𝟔) 
𝟐 𝑎0𝒀𝟒 + 𝒀𝟑 

 

… 

 

𝑸𝒋 
 

1 

𝟎 

𝒀𝟎 

𝟏 

𝒀𝟏 

𝟓 

𝒀𝟐 

𝟐𝟔 

𝒀𝟑 

𝟏𝟑𝟓 

𝒀𝟒 

 

… 

Table 2.2. Convergent of [ 2𝑎0, 5, 5, … ,5, … ] 
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The Table 2.2 completes proof. 

Definition 2.2. Let 𝑐𝑛 = 𝑎𝑐𝑛−1 + 𝑏𝑐𝑛−2 be the recurence relation of {𝑐𝑛} sequence where 𝑎, 𝑏 

are real numbers. The polynomial is called as a characteristic equation is written in the form 

of 

 𝑟2 − 𝑎𝑟 − 𝑏 = 0 

The solutions will depend on the nature of the roots of the characteristic equation for 

recurence relation.  

By using the definition, we find characteristic equation as 

𝑟2 − 5𝑟 − 1 = 0 

for {𝑌𝑘} sequence. So, we can write each element of sequence as follows: 

𝑌𝑘 = 
1

√29
 [(
5 + √29

2
)

𝑘

− (
5 − √29

2
)

𝑘

 ] 

for 𝑘 ≥ 0. 

Lemma 2.3. Let {𝑌𝑘} be the sequence defined as in Definition 2.1 and Definition 2.2. Then, 

we have  

𝑌𝑘 >

{
 
 

 
 2

5√29 + 29
(
5 + √29

2
)

𝑘

  ; 𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

1

√29
(
5 + √29

2
)

𝑘

             ;  𝑖𝑓  𝑘 𝑖𝑠 𝑜𝑑𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

 

for 𝑘 ≥ 1. 

Proof.  As a result of the Lemma 2.2 this proof can be obtained easily. 

Remark 2.1. Let {𝑌𝑛} be the sequence defined as in Definition 2.1. Then, we state the 

following: 

𝑌𝑛  ≡  { 

0(𝑚𝑜𝑑4)   ;  𝑛 ≡ 0(𝑚𝑜𝑑6)

     1(𝑚𝑜𝑑4)     ;  𝑛 ≡ 1,2,5(𝑚𝑜𝑑6)

2(𝑚𝑜𝑑4)   ;  𝑛 ≡ 3(𝑚𝑜𝑑6)

3(𝑚𝑜𝑑4)   ;  𝑛 ≡ 4(𝑚𝑜𝑑6)

 

for n ≥ 0. 
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3. MAIN THEOREMS AND RESULTS 

            The followings are our main theorem and results with the notation of the 

preliminaries.  

 

Main Theorem. Let 𝑑 be square free positive integer and ℓ be a positive integer satisfying 

that 3 ∤ ℓ ,ℓ ≥ 2. Suppose that the parametrization of 𝑑 is 

𝑑 = (
5 + (2𝛿 + 1)𝑌ℓ

2
)

2

+ (2𝛿 + 1)𝑌ℓ−1 + 1 

where 𝛿 ≥ 0 is a positive integer. Then following conditions hold: 

(1) If  ℓ ≡ 1(𝑚𝑜𝑑6) and 𝛿 is even positive integer then 𝑑 ≡ 2(𝑚𝑜𝑑4) 

(2) If  ℓ ≡ 2(𝑚𝑜𝑑6) and 𝛿 is even positive integer then 𝑑 ≡ 3(𝑚𝑜𝑑4) 

(3) If  ℓ ≡ 4(𝑚𝑜𝑑6) and 𝛿 is even positive integer then 𝑑 ≡ 3(𝑚𝑜𝑑4) 

(4) If  ℓ ≡ 5(𝑚𝑜𝑑6) and 𝛿 is odd positive integer then 𝑑 ≡ 2(𝑚𝑜𝑑4) 

     In 𝑄(√𝑑) real quadratic fields, we have  𝑤𝑑 = [
5+(2𝛿+1)𝑌ℓ

2
; 5,5, … ,5⏟    

ℓ−1

, 5 + (2𝛿 + 1)𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

with ℓ = ℓ(𝑑) for 𝑑 ≡ 2,3(𝑚𝑜𝑑4).  

    Additionally, we get the fundamental unit 𝜀𝑑 and coefficients of fundamental unit 𝑡𝑑, 𝑢𝑑 

as follows: 

          𝜀𝑑 = (
5+(2𝛿+1)𝑌ℓ

2
+ √𝑑)𝑌ℓ + 𝑌ℓ−1,       

 𝑡𝑑 = (2𝛿 + 1)𝑌ℓ
2 + 5𝑌ℓ + 2𝑌ℓ−1    and    𝑢𝑑 = 2𝑌ℓ                       

 

Proof. We say that  𝑑 ∉ 𝑍+ by using Remark 2.1 for all ℓ ≡ 0,3(𝑚𝑜𝑑6). So, we will assume 

that 3 ∤ ℓ ,ℓ ≥ 2 in order to get 𝑑 ∈ 𝑍+. First of all, we should show that four conditions hold 

as the followings: 

(1)  if ℓ ≡ 1 (𝑚𝑜𝑑6) holds, then 𝑌ℓ ≡ 1(𝑚𝑜𝑑4) and  𝑌ℓ−1 ≡ 0(𝑚𝑜𝑑4) hold. By  

substituting these values into parametrization of  𝑑 and considering 𝛿 is even positive 

integer, we obtain 𝑑 ≡ 2(𝑚𝑜𝑑4). 
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(2) If  ℓ ≡ 2(𝑚𝑜𝑑6) satisfies, then 𝑌ℓ ≡ 1(𝑚𝑜𝑑4) and  𝑌ℓ−1 ≡ 1(𝑚𝑜𝑑4) satisfy. By 

considering 𝛿 is even positive substituting these values into parametrization of  𝑑 and 

rearranging, we have 𝑑 ≡ 3(𝑚𝑜𝑑4). 

(3) If  ℓ ≡ 4(𝑚𝑜𝑑6) and 𝛿 is even positive integer, then 𝑌ℓ ≡ 3(𝑚𝑜𝑑4) and  𝑌ℓ−1 ≡

2(𝑚𝑜𝑑4)  hold and also by  substituting these values into parametrization of  𝑑, then 

𝑑 ≡ 3(𝑚𝑜𝑑4) holds. 

(4) If  ℓ ≡ 5(𝑚𝑜𝑑6) and 𝛿 is odd positive integer then we get 𝑌ℓ ≡ 1(𝑚𝑜𝑑4) and 

 𝑌ℓ−1 ≡ 3(𝑚𝑜𝑑4). By  substituting these values into parametrization of  𝑑 and 

rearranging, we have 𝑑 ≡ 2(𝑚𝑜𝑑4). 

So, conditions are satisfied. By using Lemma 2.2 we have 

                        𝑤𝑅 = (
5+(2𝛿+1)𝑌ℓ

2
) + [

5+(2𝛿+1)𝑌ℓ

2
; 5,5, … ,5⏟    

ℓ−1

, 5 + (2𝛿 + 1)𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]   

   

                  ⇒  𝑤𝑅 = (5 + (2𝛿 + 1)𝑌ℓ) +
1

5+
1

5+
1

  
        ⋱ 

                                  +
1

5+
1
𝑤𝑅

   

 

                              = (5 + (2𝛿 + 1)𝑌ℓ) + 
1

5+⋯+

1

5 +

1

𝑤𝑅
   

By using Lemma 2.1 and Lemma 2.2, we get  

𝑤𝑅 = (5 + (2𝛿 + 1)𝑌ℓ) + 
𝑌ℓ−1𝑤𝑅 + 𝑌ℓ−2
𝑌ℓ𝑤𝑅 + 𝑌ℓ−1

 

Using Definition 2.1  and put 𝑌ℓ+1 + 𝑌ℓ−1 = 5𝑌ℓ + 2𝑌ℓ−1  equation into the above equality, 

we obtain  

𝑤𝑅
2 − (5 + (2𝛿 + 1)𝑌ℓ)𝑤𝑅 − (1 + (2𝛿 + 1)𝑌ℓ−1) = 0 

This implies that   𝑤𝑅 = (
5+(2𝛿+1)𝑌ℓ

2
) + √𝑑 since 𝑤𝑅 > 0. If we consider Lemma 2.2, we get 

 √𝑑 = [ 
5+(2𝛿+1)𝑌ℓ

2
; 5,5, … ,5,5 + (2𝛿 + 1)𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ]  and ℓ = ℓ(𝑑).  

Hence, 𝑤𝑑 = [ 
5+(2𝛿+1)𝑌ℓ

2
; 5,5, … ,5⏟    

ℓ−1

, 5 + (2𝛿 + 1)𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ] holds. 

Now, we can determine 𝜀𝑑, 𝑡𝑑  and 𝑢𝑑  using Lemma 2.1 as follows: 
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                       Q
0
= 0 = 𝑌0,    Q

1
= 1 = 𝑌1,     Q

2
= 𝑎1. Q

1
+ Q

0
 ⇒ Q

2
= 5 = 𝑌2,  

                                     Q
3
= 𝑎2Q

2
+ Q

1
= 5𝑌2 + 𝑌1 =𝑌3,     Q

4
= 𝑌4,   … 

So, this implies that    𝑄𝑖 = 𝑌𝑖  by using mathematical induction for ∀𝑖 ≥ 0. If we substitute 

these values of sequence into the 
0 ( ) ( ) 1( ) 1

2

d d
d l d l d

t u d
a d Q Q 


      and 

rearranged, we get  

                       𝜀𝑑 = (
5+(2𝛿+1)𝑌ℓ

2
+ √𝑑)𝑌ℓ + 𝑌ℓ−1,       

 𝑡𝑑 = (2𝛿 + 1)𝑌ℓ
2 + 5𝑌ℓ + 2𝑌ℓ−1    and    𝑢𝑑 = 2𝑌ℓ   

We can obtain following theorems and conclusions from Main Theorem.  

Theorem 3.1. Let 𝑑 be square free positive integer and ℓ be a positive integer satisfying that 

ℓ ≢ 5(𝑚𝑜𝑑6), 3 ∤ ℓ and ℓ ≥ 2. Suppose that parametrization of 𝑑 is 

𝑑 = (
5 + 𝑌ℓ
2

)
2

+ 𝑌ℓ−1 + 1 

Then ,we have 𝑑 ≡ 2,3(𝑚𝑜𝑑4) and   𝑤𝑑 = [
5+𝑌ℓ

2
; 5,5, … ,5⏟    

ℓ−1

, 5 + 𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] with ℓ = ℓ(𝑑).  

Additionally, we get the fundamental unit 𝜀𝑑 , coefficients of fundamental unit 𝑡𝑑 , 𝑢𝑑 and 

Yokoi’s invariant 𝑚𝑑 as follows: 

          𝜀𝑑 = (
5+𝑌ℓ

2
+ √𝑑)𝑌ℓ + 𝑌ℓ−1,       

 𝑡𝑑 = 𝑌ℓ
2 + 𝑌ℓ+1 + 𝑌ℓ−1    and    𝑢𝑑 = 2𝑌ℓ    

                            𝑚𝑑 = 3  

Proof. This theorem is obtained from main theorem by taking 𝛿 = 0.  Assume that ℓ ≢

5(𝑚𝑜𝑑6), 3 ∤ ℓ and ℓ ≥ 2. By using this assumption and Remark 2.1, we obtain that 

 if ℓ ≡ 1,2 (𝑚𝑜𝑑6), we have 𝑑 ≡ 2,3(𝑚𝑜𝑑4) and if ℓ ≡ 4 (𝑚𝑜𝑑6), we get 𝑑 ≡ 3(𝑚𝑜𝑑4). 

By using Lemma 2.2 we get  

𝑤𝑅 = (
5 + 𝑌ℓ
2

) + [
5 + 𝑌ℓ
2

; 5,5, … ,5⏟    
ℓ−1

, 5 + 𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 



 

                                                           Ozer / Kirklareli University Journal of Engineering and Science 2 (2016) 74-89  

 

Notes on Especial Continued Fraction Expansions and  Real Quadratic Number Fields 
 

83 

                  ⇒   𝑤𝑅 = (5 + 𝑌ℓ) +
1

5+
1

5+
1

  
        ⋱ 

                                  +
1

5+
1
𝑤𝑅

   

= (5 + 𝑌ℓ) + 
1

5+⋯+

1

5 +

1

𝑤𝑅
   

By using Lemma 2.1 and Lemma 2.3, we get  

𝑤𝑅 = (5 + 𝑌ℓ) + 
𝑌ℓ−1𝑤𝑅 + 𝑌ℓ−2
𝑌ℓ𝑤𝑅 + 𝑌ℓ−1

 

Using Definition 2.1 and put  𝑌ℓ+1 + 𝑌ℓ−1 = 5𝑌ℓ + 2𝑌ℓ−1  equation into the above equality, 

we obtain  

𝑤𝑅
2 − (5 + 𝑌ℓ)𝑤𝑅 − (1 + 𝑌ℓ−1) = 0 

This implies that   𝑤𝑅 = (
5+𝑌ℓ

2
) + √𝑑 since 𝑤𝑅 > 0. If we consider Lemma 2.2 we get 

 √𝑑 = [ 
5+𝑌ℓ

2
; 5,5, … ,5,5 + 𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ]  and ℓ = ℓ(𝑑). Hence, 𝑤𝑑 = [ 

5+𝑌ℓ

2
; 5,5, … ,5⏟    

ℓ−1

, 5 + 𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ] holds. 

Now, we can determine 𝜀𝑑, 𝑡𝑑  and 𝑢𝑑  using Lemma 2.1. We obtain 𝑄𝑖 = 𝑌𝑖 for ∀𝑖 ≥ 0. If we 

substitute these values of sequence into the 
0 ( ) ( ) 1( ) 1

2

d d
d l d l d

t u d
a d Q Q 


      and 

rearranged, we get  

                    𝜀𝑑 = (
5+𝑌ℓ

2
+ √𝑑)𝑌ℓ + 𝑌ℓ−1,       

             𝑡𝑑 = 𝑌ℓ
2 + 𝑌ℓ+1 + 𝑌ℓ−1    and   𝑢𝑑 = 2𝑌ℓ 

Finally, we know that 𝑚𝑑 is defined as  𝑚𝑑 = ⟦ 
𝑢𝑑
2

𝑡𝑑
 ⟧  from H.Yokoi’s reference. If we 

substitue 𝑡𝑑  and 𝑢𝑑  into the 𝑚𝑑, then we get 

𝑚𝑑 = ⟦
𝑢𝑑
2

𝑡𝑑
⟧ = ⟦

4𝑌ℓ
2

𝑌ℓ
2 + 𝑌ℓ+1 + 𝑌ℓ−1

⟧ 

We can’t calculate 𝑚𝑑 = ⟦ 
𝑢𝑑
2

𝑡𝑑
 ⟧  due to 𝑑  is not square free positive integer for ℓ = 2.  From 

the assumption and by considering  𝑌ℓ is increasing sequence, we get, 

                                                         4 >  4 (
𝑌ℓ
2

𝑌ℓ
2+𝑌ℓ+1+𝑌ℓ−1

) > 3,846       
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for ℓ ≥ 4. Therefore, we obtain 𝑚𝑑 = ⟦
4𝑌ℓ

2

𝑌ℓ
2+𝑌ℓ+1+𝑌ℓ−1

⟧ = 3 for ℓ ≥ 4 due to definition of 𝑚𝑑. 

This completes the proof of Theorem 3.1. 

 

Corollary 3.1. Let 𝑑 be the square free positive integer positive integer satisfying the 

conditions in Theorem 3.1. We state the following Table 3.1 where fundamental unit is 𝜀𝑑, 

integral basis elemant is 𝑤𝑑 and Yokoi’s invariant is 𝑚𝑑 for 4 ≤ ℓ(𝑑) ≤ 13. (In this table, we 

rule out ℓ(𝑑) = 2, 7  since d is not a square free positive integer in these periods). 

 

𝑑 ℓ(𝑑) 𝑚𝑑 𝑤𝑑 𝜀𝑑 

 

4927 

 

4 

 

3 

 

[70; 5,5,5,140̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

 

9476+135√4927 

 

2408374527 

 

8 

 

3 

 

[49075; 5,5,5,5,5,5,5,98150̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

 

4816484776+98145√2408374527 

 

1750699969227 

 

10 

 

3 

 

[1323140;5,5,5,5,5,5,5,5,5,2646280̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

 

3501392813126+2646275√1750699969227 

 

34317082034533490 

 

13 

 

3 

 

[185248703; 5,5,5,5,5,5,5,5,5,5,5,5,370497406̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

 

68634163071472183+370497401√34317082034533490 

Table 3.1. 

 

Theorem 3.2. Let 𝑑 be the square free positive integer and ℓ be a positive integer satisfying 

that  ℓ ≡ 5(𝑚𝑜𝑑6) and ℓ > 1. We assume  that parametrization of 𝑑 is 

𝑑 = (
5 + 3𝑌ℓ
2

)
2

+ 3𝑌ℓ−1 + 1 

Then ,we get 𝑑 ≡ 2(𝑚𝑜𝑑4) and   𝑤𝑑 = [
5+3𝑌ℓ

2
; 5,5, … ,5⏟    

ℓ−1

, 5 + 3𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] and ℓ = ℓ(𝑑). 

 

Moreover, we have following equalities : 

         𝜀𝑑 = ((
5+3𝑌ℓ

2
) 𝑌ℓ + 𝑌ℓ−1)+ 𝑌ℓ√𝑑       

                                           𝑡𝑑 = 3𝑌ℓ
2 + 5𝑌ℓ + 2𝑌ℓ−1   and   𝑢𝑑 = 2𝑌ℓ   

𝑚𝑑 = 1 

for 𝜀𝑑 , 𝑡𝑑 , 𝑢𝑑 and Yokoi’s invariant 𝑚𝑑. 
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Proof. We can create this theorem by substituting 𝛿 = 1 in Main Theorem. If we suppose 

that ℓ ≡ 5(𝑚𝑜𝑑6) and ℓ > 1 ,then we have  𝑌ℓ ≡ 1(𝑚𝑜𝑑4) and 𝑌ℓ−1 ≡ 3(𝑚𝑜𝑑4) . Also, if 

we put these equivalents into 𝑑 = (
5+3𝑌ℓ

2
)
2

+ 3𝑌ℓ−1 + 1  then we get 𝑑 ≡ 2(𝑚𝑜𝑑4). By 

using Lemma 2.2, we have  

𝑤𝑅 = (5 + 3𝑌ℓ) + 
𝑌ℓ−1𝑤𝑅 + 𝑌ℓ−2
𝑌ℓ𝑤𝑅 + 𝑌ℓ−1

 

We obtain the proof in a similar way of proof of Theorem 3.1.  By using Lemma 2.1, Lemma 

2.3 and Definition 2.1, we get 𝑤𝑅 = (
5+3𝑌ℓ

2
) + √𝑑 since 𝑤𝑅 > 0. 

If we consider Lemma 2.2 we have 

𝑤𝑑 = √𝑑 = [
5+3𝑌ℓ

2
; 5,5, … ,5⏟    

ℓ−1

, 5 + 3𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]  and ℓ = ℓ(𝑑). 

𝜀𝑑, 𝑡𝑑  and 𝑢𝑑  are determined as follows using Lemma 2.1. It is seen that   𝑄𝑖 = 𝑌𝑖  holds for 

∀𝑖 ≥ 1. If we substitute these values of sequence into the

 and rearranged, we have  

𝜀𝑑 = ((
3𝑌ℓ + 5

2
)𝑌ℓ + 𝑌ℓ−1) + 𝑌ℓ√𝑑 

                                            𝑡𝑑 = 3𝑌ℓ
2 + 5𝑌ℓ + 2𝑌ℓ−1   and   𝑢𝑑 = 2𝑌ℓ. 

 If we substitute 𝑡𝑑  and 𝑢𝑑  into the 𝑚𝑑 and rearranged, then we get 

𝑚𝑑 = ⟦ 
𝑢𝑑
2

𝑡𝑑
 ⟧ = ⟦ 

4𝑌ℓ
2

3𝑌ℓ
2 + 𝑌ℓ−1 + 𝑌ℓ+1

 ⟧ 

 

From the assumption and since 𝑌ℓ is increasing sequence, we have 

2 >  4 (
𝑌ℓ
2

3𝑌ℓ
2 + 𝑌ℓ−1 + 𝑌ℓ+1

 ) > 1,329 

where ℓ ≡ 5(𝑚𝑜𝑑6), ℓ > 1. Therefore, we obtain 𝑚𝑑 = ⟦ 
4𝑌ℓ

2

3𝑌ℓ
2+𝑌ℓ−1+𝑌ℓ+1

 ⟧ = 1 for  ℓ ≡

5(𝑚𝑜𝑑6),  ℓ ≥ 5 which completes the proof  of  Theorem 3.2. 

 

0 ( ) ( ) 1( ) 1
2

d d
d l d l d

t u d
a d Q Q 
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Corollary 3.2. Let 𝑑 be the square free positive integer satisfying the conditions in Theorem 

3.2. We state the following Table 3.2  where fundamental unit is 𝜀𝑑, integral basis elemant is 

𝑤𝑑 and Yokoi’s invariant is 𝑚𝑑 for 1 < ℓ(𝑑) ≤ 17. 

𝑑 ℓ(𝑑) 𝑚𝑑 𝑤𝑑 𝜀𝑑 

 

1111322 

 

5 

 

1 

 

[1054; 5,5,5,5,2108̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

 

738989+ 701√1111322 

 

424834105080842 

 

11 

 

1 

 

[20611504;5,5, …5,41223008̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

 

283222699721779+ 13741001√424834105080842 

 

163237535004482301880562 

 

17 

 

1 

 

[404026651354;5,5, …5,808053302708̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

 

108825023335829727323369+ 

269351100901√163237535004482301880562 

Table 3.2. 

 

 

Theorem 3.3. Let 𝑑 be square free positive integer and ℓ be a positive integer satisfying that  

ℓ ≢ 5(𝑚𝑜𝑑6), 3 ∤ ℓ and ℓ ≥ 2. Suppose that the parametrization of 𝑑 is 

𝑑 = (
5𝑌ℓ + 5

2
)
2

+ 5𝑌ℓ−1 + 1 

Then, we have 𝑑 ≡ 2,3(𝑚𝑜𝑑4) and   𝑤𝑑 = [
5𝑌ℓ+5

2
; 5,5, … 5⏟    ,

ℓ−1

5 + 5𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] with ℓ = ℓ(𝑑).  

Additionally, we get the fundamental unit 𝜀𝑑 , coefficients of fundamental unit 𝑡𝑑 , 𝑢𝑑 and 

Yokoi’s invariant 𝑛𝑑 as follows: 

          𝜀𝑑 = (
5𝑌ℓ+5

2
+ √𝑑)𝑌ℓ + 𝑌ℓ−1,       

 𝑡𝑑 = 5𝑌ℓ
2 + 𝑌ℓ+1 + 𝑌ℓ−1    and    𝑢𝑑 = 2𝑌ℓ    

                            𝑛𝑑 = 1  

 

Proof. We have this theorem for 𝛿 = 2  by using  Main Theorem. Suppose  that ℓ ≢

5(𝑚𝑜𝑑6), 3 ∤ ℓ and ℓ ≥ 2. By using this assumption and Remark 2.1 we can find some 

results as follows: 

(i) if ℓ ≡ 1,2 (𝑚𝑜𝑑6), then 𝑌ℓ ≡ 1(𝑚𝑜𝑑4) as well as either  𝑌ℓ−1 ≡ 1(𝑚𝑜𝑑4) or 

𝑌ℓ−1 ≡ 0(𝑚𝑜𝑑4) holds. if 𝑌ℓ ≡ 1(𝑚𝑜𝑑4) and   𝑌ℓ−1 ≡ 1(𝑚𝑜𝑑4) ,then 𝑑 ≡

3(𝑚𝑜𝑑4) otherwise 𝑑 ≡ 2(𝑚𝑜𝑑4) holds. So, we have 𝑑 ≡ 2,3(𝑚𝑜𝑑4). 



 

                                                           Ozer / Kirklareli University Journal of Engineering and Science 2 (2016) 74-89  

 

Notes on Especial Continued Fraction Expansions and  Real Quadratic Number Fields 
 

87 

 

(ii) if ℓ ≡ 4 (𝑚𝑜𝑑6), then 𝑌ℓ ≡ 3(𝑚𝑜𝑑4) and  𝑌ℓ−1 ≡ 2(𝑚𝑜𝑑4) hold. By  substituting 

these values into parametrization of  𝑑 and rearranging, we have 𝑑 ≡ 3(𝑚𝑜𝑑4). 

Hence, 𝑑 ≡ 2,3(𝑚𝑜𝑑4) holds. 

We get  

𝑤𝑅 = (5 + 5𝑌ℓ) + 
𝑌ℓ−1𝑤𝑅 + 𝑌ℓ−2
𝑌ℓ𝑤𝑅 + 𝑌ℓ−1

 

using Lemma 2.1 and Lemma 2.2 with the properties of continued fraction expansion. Using 

Definition 2.1 we have  

𝑤𝑅
2 − (5 + 5𝑌ℓ)𝑤𝑅 − (1 + 5𝑌ℓ−1) = 0 

This implies that   𝑤𝑅 = (
5+5𝑆ℓ

2
) + √𝑑 since 𝑤𝑅 > 0.  

Hence, 𝑤𝑑 = [
5𝑌ℓ+5

2
; 5,5, … 5,⏟    

ℓ−1

5 + 5𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] holds. 

By using  𝑄𝑖 = 𝑌𝑖 for ∀𝑖 ≥ 1 into the 
0 ( ) ( ) 1( ) 1

2

d d
d l d l d

t u d
a d Q Q 


      and 

rearranged, we obtain 

                  𝜀𝑑 = (
5𝑌ℓ+5

2
+ √𝑑)𝑌ℓ + 𝑌ℓ−1,       

 𝑡𝑑 = 5𝑌ℓ
2 + 𝑌ℓ+1 + 𝑌ℓ−1    and    𝑢𝑑 = 2𝑌ℓ    

Finally, we know that 𝑛𝑑 is defined as  𝑛𝑑 = ⟦ 
𝑡𝑑

𝑢𝑑
2  ⟧. If we substitue 𝑡𝑑  and 𝑢𝑑  into the 𝑛𝑑, 

then we get 

𝑛𝑑 = ⟦ 
𝑡𝑑

𝑢𝑑
2  ⟧ = ⟦

5𝑌ℓ
2 + 𝑌ℓ+1 + 𝑌ℓ−1

4𝑌ℓ
2 ⟧ 

                                                    = 1+ ⟦ 
1

4
+
𝑌ℓ+1

4𝑌ℓ
2 + 

𝑌ℓ−1

4𝑌ℓ
2 ⟧ 

From the assumption, since 𝑌ℓ is increasing sequence, we calculate following inequality for 

ℓ ≥ 2  
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 0 <  
𝑌ℓ
2 + 𝑌ℓ+1 + 𝑌ℓ−1

4𝑌ℓ
2 ≤ 0,520 

Hence, we obtain 𝑛𝑑 =  1 + ⟦ 
1

4
+
𝑌ℓ+1

4𝑌ℓ
2 + 

𝑌ℓ−1

4𝑌ℓ
2 ⟧ = 1 for ℓ ≥ 2 due to definition of 𝑛𝑑 .This 

completes the proof of Theorem 3.3. 

Corollary 3.3. Let 𝑑 be the square free positive integer positive integer satisfying the 

conditions in Theorem 3.3. We state the following Table 3.3 where fundamental unit is 𝜀𝑑, 

integral basis elemant is 𝑤𝑑 and and Yokoi’s invariant is 𝑛𝑑 for 2 ≤ ℓ(𝑑) ≤ 13. (In the 

following table, we rule out ℓ(𝑑) = 4,10  since d is not a square free positive integer in these 

periods). 

 

𝑑 ℓ(𝑑) 𝑛𝑑 𝑤𝑑 𝜀𝑑 

 

231 

 

2 

 

1 

 

[15; 5,30̅̅ ̅̅ ̅̅ ] 

 

76+5√231 

 

2233053226 

 

7 

 

1 

 

[47255; 5,5,5,5,5,5,94510̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

 

893170395+18901√2233053226 

 

60204077731 

 

8 

 

1 

 

[245365; 5,5,5,5,5,5,5,5490730̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

 

24081366826+98145√60204077731 

 

857927030911441426 

 

13 

 

1 

 

[926243505; 5,5,… 5,1852487010̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

 

343170811366981785 + 

370497401 √857927030911441426 

Table 3.3. 
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