dc.contributor.author | Ekmekci, Ramazan | |
dc.date.accessioned | 2021-12-12T17:00:58Z | |
dc.date.available | 2021-12-12T17:00:58Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1303-5991 | |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.567501 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11857/3008 | |
dc.description.abstract | In this paper, initial and product graded ditopologies are formulated and accordingly it is shown that dfGDitop is a topological structure over dffex x dffex. By means of spectrum idea, (di)compactness in graded ditological texture spaces is defined as a generalization of (di)compactness in ditopological case and its relation with the ditopological case is investigated. Moreover, the relations between graded difilters and dicompactness of graded ditological texture spaces are studied. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Ankara Univ, Fac Sci | en_US |
dc.relation.ispartof | Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics | en_US |
dc.identifier.doi | 10.31801/cfsuasmas.567501 | |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Dicompactness spectrum | en_US |
dc.subject | product graded ditopology | en_US |
dc.subject | initial graded ditopology | en_US |
dc.subject | compactness | en_US |
dc.subject | cocompactness | en_US |
dc.title | A TYCHONOFF THEOREM FOR GRADED DITOPOLOGICAL TEXTURE SPACES | en_US |
dc.type | article | |
dc.authorid | EKMEKCI, RAMAZAN/0000-0001-6496-7358 | |
dc.department | Fakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümü | |
dc.identifier.volume | 69 | en_US |
dc.identifier.startpage | 193 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.endpage | 212 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wos | WOS:000499091900014 | en_US |
dc.institutionauthor | Ekmekci, Ramazan | |