Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTak, Nihat
dc.date.accessioned2021-12-12T17:01:09Z
dc.date.available2021-12-12T17:01:09Z
dc.date.issued2021
dc.identifier.issn0094-9655
dc.identifier.issn1563-5163
dc.identifier.urihttps://doi.org/10.1080/00949655.2021.1909024
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3086
dc.description.abstractFeed-forward neural networks have been frequently used in forecasting problems, recently. In this study, we propose a naive method to improve the forecasting ability of feed-forward neural networks with a single hidden layer by adapting meta fuzzy functions. Because neural networks are very sensitive to the initial random weights, usually some numbers of repeats are processed with different initial random weights. The forecasts for the different repeats are, then, averaged with equal weights to obtain more reliable results. However, if we can assign the correct initials with more appropriate weights, then, neural networks can produce very competitive outcomes. In this sense, rather than assigning the equal weights for different repeats with different initials, meta fuzzy functions are used to investigate the best/better forecast with assigning different weights. 4 datasets are used to verify the performance of the proposed method in terms of RMSE and MAPE metrics.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofJournal of Statistical Computation and Simulationen_US
dc.identifier.doi10.1080/00949655.2021.1909024
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFeed-forward neural networksen_US
dc.subjectmeta fuzzy functionsen_US
dc.subjectforecastingen_US
dc.subjectfuzzy logicen_US
dc.titleMeta fuzzy functions based feed-forward neural networks with a single hidden layer for forecastingen_US
dc.typearticle
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, Ekonometri Bölümü
dc.identifier.volume91en_US
dc.identifier.startpage2800en_US
dc.identifier.issue13en_US
dc.identifier.endpage2816en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57194529021
dc.identifier.wosWOS:000636883500001en_US
dc.identifier.scopus2-s2.0-85103655159en_US
dc.institutionauthorTak, Nihat


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster