Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAlakuş, Talha Burak
dc.contributor.authorTürkoğlu, İbrahim
dc.date.accessioned2021-12-12T17:01:31Z
dc.date.available2021-12-12T17:01:31Z
dc.date.issued2020
dc.identifier.issn0013-5194
dc.identifier.issn1350-911X
dc.identifier.urihttps://doi.org/10.1049/el.2020.2460
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3215
dc.description.abstractEmotion recognition is actively used in brain-computer interface, health care, security, e-commerce, education and entertainment applications to increase and control human-machine interaction. Therefore, emotions affect people's lives and decision-making mechanisms throughout their lives. However, the fact that emotions vary from person to person, being an abstract concept and being dependent on internal and external factors makes the studies in this field difficult. In recent years, studies based on electroencephalography (EEG) signals, which perform emotion analysis in a more robust and reliable way, have gained momentum. In this article, emotion analysis based on EEG signals was performed to predict positive and negative emotions. The study consists of four parts. In the first part, EEG signals were obtained from the GAMEEMO data set. In the second stage, the spectral entropy values of the EEG signals of all channels were calculated and these values were classified by the bidirectional long-short term memory architecture in the third stage. In the last stage, the performance of the deep-learning architecture was evaluated with accuracy, sensitivity, specificity and receiver operating characteristic (ROC) curve. With the proposed method, an accuracy of 76.91% and a ROC value of 90% were obtained.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.ispartofElectronics Lettersen_US
dc.identifier.doi10.1049/el.2020.2460
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectlearning (artificial intelligence)en_US
dc.subjecthuman computer interactionen_US
dc.subjectemotion recognitionen_US
dc.subjectelectroencephalographyen_US
dc.subjectdecision makingen_US
dc.subjectmedical signal processingen_US
dc.subjectentropyen_US
dc.subjectemotion recognitionen_US
dc.subjectbrain-computer interfaceen_US
dc.subjecthealth careen_US
dc.subjecteducationen_US
dc.subjectentertainment applicationsen_US
dc.subjecthuman-machine interactionen_US
dc.subjectabstract concepten_US
dc.subjectinternal factorsen_US
dc.subjectelectroencephalography signalsen_US
dc.subjectemotion analysisen_US
dc.subjectEEG signalsen_US
dc.subjectpositive emotionsen_US
dc.subjectnegative emotionsen_US
dc.subjectGAMEEMO data seten_US
dc.subjectdeep learningen_US
dc.titleEmotion recognition with deep learning using GAMEEMO data seten_US
dc.typearticle
dc.authoridTURKOGLU, Ibrahim/0000-0003-4938-4167
dc.authoridALAKUS, Talha Burak/0000-0003-3136-3341
dc.departmentFakülteler, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümü
dc.identifier.volume56en_US
dc.identifier.issue25en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57200138797
dc.authorscopusid6603155686
dc.identifier.wosWOS:000604957700004en_US
dc.identifier.scopus2-s2.0-85098915326en_US
dc.authorwosidALAKUS, Talha Burak/ABI-1288-2020
dc.authorwosidTURKOGLU, Ibrahim/A-2640-2016
dc.authorwosidALAKUS, Talha Burak/W-4832-2018


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster