Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorRajagopal, Karthikeyan
dc.contributor.authorTuna, Murat
dc.contributor.authorKarthikeyan, Anitha
dc.contributor.authorKoyuncu, İsmail
dc.contributor.authorDuraisamy, Prakash
dc.contributor.authorAkgül, Akif
dc.date.accessioned2021-12-12T17:03:26Z
dc.date.available2021-12-12T17:03:26Z
dc.date.issued2019
dc.identifier.issn1951-6355
dc.identifier.issn1951-6401
dc.identifier.urihttps://doi.org/10.1140/epjst/e2019-900005-8
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3678
dc.description.abstractRecent developments in the applications of neural networks in various engineering and technology applications have motivated researchers to study the nonlinear behavior of such networks. In this work we investigate a fractional-order Hopfield neural network with memristor synaptic weight. The dynamical properties of the proposed system are examined and the memristor neural network shows hyperchaotic attractors in fractional orders with hidden oscillations. We also propose an adaptive sliding mode control technique to synchronize the proposed fractional-order systems with uncertainties. Numerical simulations are derived to show the effectiveness of the synchronization algorithm. Moreover, the designed chaotic memristor Hopfield neural network system is realized on FPGA using the 4th-order Runge-Kutta (RK4) numerical algorithm. The FPGA-based chaotic memristor HNN is coded in VHDL using the 32-bit IEEE-754-1985 floating point standard. The chaotic memristor neural network designed on FPGA is synthesized and tested using Xilinx ISE. The chip statistics of Xilinx XC6VLX240T-1-FF1156 kit obtained from Place & Route operation for the designed RK4-based system is presented. The operating frequency of newly modeled FPGA-based memristor neural network chaotic signal generator is 231.616 MHz.en_US
dc.language.isoengen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofEuropean Physical Journal-Special Topicsen_US
dc.identifier.doi10.1140/epjst/e2019-900005-8
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChaotic Systemsen_US
dc.subjectNonlinear Dynamicsen_US
dc.subjectStability Analysisen_US
dc.subjectCircuit-Designen_US
dc.subjectTimeen_US
dc.subjectGeneratoren_US
dc.subjectEquilibriumen_US
dc.subjectOscillatoren_US
dc.subjectHardwareen_US
dc.titleDynamical analysis, sliding mode synchronization of a fractional-order memristor Hopfield neural network with parameter uncertainties and its non-fractional-order FPGA implementationen_US
dc.typearticle
dc.authoridDuraisamy, Prakash/0000-0001-6446-3766
dc.authoridRajagopal, Karthikeyan/0000-0003-2993-7182
dc.authoridAKGUL, Akif/0000-0001-9151-3052
dc.authoridKarthikeyan, Anitha/0000-0001-6485-4687
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü
dc.departmentMeslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Elektrik ve Enerji Bölümü
dc.identifier.volume228en_US
dc.identifier.startpage2065en_US
dc.identifier.issue10en_US
dc.identifier.endpage2080en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosWOS:000503216100013en_US
dc.authorwosidDuraisamy, Prakash/AAK-1600-2021
dc.authorwosidTUNA, Murat/AAY-4674-2020
dc.authorwosidRajagopal, Karthikeyan/L-6724-2015
dc.authorwosidAKGUL, Akif/A-2225-2016


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster